【题目】已知函数.
(1)若存在极值,求实数a的取值范围;
(2)设,设是定义在上的函数.
(ⅰ)证明:在上为单调递增函数(是的导函数);
(ⅱ)讨论的零点个数.
【答案】(1).(2)(ⅰ)证明见解析;(ⅱ)答案见解析
【解析】
(1)求导得,按照、分类,求得、的解集即可得解;
(2)(ⅰ)令,对求导,按照、分类,证明恒大于0,即可得证;
(ⅱ)由的单调性结合,按照、分类,结合即可得解.
(1)求导得,
当时,,在R上单调递减,无极值;
当时,在单调递减,在上单调递增,
则在处有极小值.
综上,实数a的取值范围为;
(2)(ⅰ)证明:由题意,
∵令,
∴,
∵,
当时,,,,
则;
当时,令,则,
所以在上单调递减,在上单调递增,
所以,所以,
从而有:,而,
则,则;
综上,对都有成立,
故在区间单调递增;
(ⅱ)由(ⅰ)知,在区间单调递增且,
①当时,,
当时,则在单调递减;
当时,则在单调递增,
则是的唯一极小值点,且,
从而可知:当时,在区间有唯一零点0;
②当时,有,
且,
故存在使,
此时在单调递减,在单调递增,
且
,
又,由零点存在定理知:
则在区间有唯一零点,记作,
从而可知:当时,在区间上有两个零点:0和;
综上:①当时,在区间有唯一零点0;
②当时,在区间有两个不同零点.
科目:高中数学 来源: 题型:
【题目】已知分别是离心率为的椭圆的左、右顶点,是椭圆的右焦点,且.
(1)求椭圆的方程;
(2)已知动直线与椭圆有且只有一个公共点.
①若交轴于点,求点横坐标的取值范围;
②设直线交直线于点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在①,②,③这三个条件中任选一个,补充在下面问题中,并解答.已知等差数列的公差,前项和为,若_______,数列满足,,.
(1)求的通项公式;
(2)求的前项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知为抛物线上一点,斜率分别为,的直线PA,PB分别交抛物线于点A,B(不与点P重合).
(1)证明:直线AB的斜率为定值;
(2)若△ABP的内切圆半径为.
(i)求△ABP的周长(用k表示);
(ii)求直线AB的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直三校柱中,是等直角三角形,,,M是AB的中点,且.
(1)求的长;
(2)已知点N在棱上,若平面与平面所成锐二面角的平面角的余弦值为,试确定点N的位置.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线的参数方程为为参数),以为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,点是曲线上的动点,点在的延长线上,且,点的轨迹为.
(1)求直线及曲线的极坐标方程;
(2)若射线与直线交于点,与曲线交于点(与原点不重合),求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数的图象过点,且相邻两个最高点与最低点的距离为.
(1)求函数的解析式和单调增区间;
(2)若将函数图象上所有的点向左平移个单位长度,再将所得图象上所有点的横坐标变为原来的,得到函数的图象,求在上的值域.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com