精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,棱底面,且, , , 的中点.

(1)求证: 平面

(2)求三棱锥的体积.

【答案】(1) 见解析(2)

【解析】试题分析:(1)取中点,连接,利用线面垂直的性质,得到,进而得到平面,又根据三角形的性质,证得,即可证明 平面

(2)解:由(1)知, 是三棱锥的高,再利用三棱锥的体积公式,即可求解几何体的体积.

试题解析:

(1)证明:取中点,连接,∵底面, 底面, ,且 平面,又平面,所以.

又∵,H为PB的中点, ,又, 平面,在中, 分别为中点, ,又, ,

∴四边形是平行四边形,∴ 平面.

(2)解:由(1)知, ,∴,又,且,

平面, 是三棱锥的高,又可知四边形为矩形,且, ,所以 .

另解: 的中点,∴到平面的距离是到平面的距离的一半,

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,该几何体是由一个直三棱柱和一个正四棱锥组合而成,

(Ⅰ)证明:平面平面

(Ⅱ)求正四棱锥的高,使得二面角的余弦值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=emx+x2-mx.

(1)证明:f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增;

(2)若对于任意x1,x2∈[-1,1],都有|f(x1)-f(x2)|≤e-1,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我校为丰富师生课余活动,计划在一块直角三角形的空地上修建一个占地面积为(平方米)的矩形健身场地,如图,点上,点上,且点在斜边上,已知 米, 米, .设矩形健身场地每平方米的造价为元,再把矩形以外(阴影部分)铺上草坪,每平方米的造价为元(为正常数)

(1)试用表示,并求的取值范围;

(2)求总造价关于面积的函数;

(3)如何选取,使总造价最低(不要求求出最低造价)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若,求函数的极值及单调区间;

(2)若在区间上至少存在一点,使成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的参数方程为为参数),以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,并使得它与直角坐标系有相同的长度单位,曲线的极坐标方程为

(1)求直线的普通方程和曲线的直角坐标方程;

(2)设曲线与直线交于两点,且点的坐标为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有两个零点.

(1)求实数的取值范围;

(2)设 )是的两个零点,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱锥中,底面为矩形, .侧面底面.

(1)证明:

(2)设与平面所成的角为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为 为椭圆的上顶点, 为等边三角形,且其面积为为椭圆的右顶点.

Ⅰ)求椭圆的方程;

Ⅱ)若直线与椭圆相交于两点(不是左、右顶点),且满足,试问:直线是否过定点?若过定点,求出该定点的坐标,否则说明理由.

查看答案和解析>>

同步练习册答案