精英家教网 > 高中数学 > 题目详情

(本小题满分14分)

       平面内与两定点)连线的斜率之积等于非零常数m的点的轨迹,加上A2两点所成的曲线C可以是圆、椭圆或双曲线。

(Ⅰ)求曲线C的方程,并讨论C的形状与m值的关系;

(Ⅱ)当时,对应的曲线为;对给定的,对应的曲线为,设的两个焦点。试问:在上,是否存在点,使得△的面积。若存在,求的值;若不存在,请说明理由。

本小题主要考查曲线与方程、圆锥曲线等基础知识,同时考查推理运算的能力,以及分类与整合和数形结合的思想。(满分14分)

    解:(I)设动点为M,其坐标为

    当时,由条件可得

的坐标满足

故依题意,曲线C的方程为

曲线C的方程为是焦点在y轴上的椭圆;

时,曲线C的方程为,C是圆心在原点的圆;

时,曲线C的方程为,C是焦点在x轴上的椭圆;

时,曲线C的方程为C是焦点在x轴上的双曲线。

(II)由(I)知,当m=-1时,C1的方程为

时,

C2的两个焦点分别为

对于给定的

C1上存在点使得的充要条件是

 

 

由①得由②得

时,

存在点N,使S=|m|a2

时,

不存在满足条件的点N,

时,

可得

则由

从而

于是由

可得

综上可得:

时,在C1上,存在点N,使得

时,在C1上,存在点N,使得

时,在C1上,不存在满足条件的点N。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•广东模拟)(本小题满分14分 已知函数f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化简f(x)的表达式,并求f(x)的最小正周期;
(II)当x∈[0,
π
2
]  时,求函数f(x)
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分14分)设椭圆C1的方程为(ab>0),曲线C2的方程为y=,且曲线C1C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设AB是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。

查看答案和解析>>

科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题

(本小题满分14分)
已知=2,点()在函数的图像上,其中=.
(1)证明:数列}是等比数列;
(2)设,求及数列{}的通项公式;
(3)记,求数列{}的前n项和,并证明.

查看答案和解析>>

科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题

 (本小题满分14分)

某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第天()的销售价格(单位:元)为,第天的销售量为,已知该商品成本为每件25元.

(Ⅰ)写出销售额关于第天的函数关系式;

(Ⅱ)求该商品第7天的利润;

(Ⅲ)该商品第几天的利润最大?并求出最大利润.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题

(本小题满分14分)已知的图像在点处的切线与直线平行.

⑴ 求满足的关系式;

⑵ 若上恒成立,求的取值范围;

⑶ 证明:

 

查看答案和解析>>

同步练习册答案