精英家教网 > 高中数学 > 题目详情
设函数f(x)=sin(2x+
π
3
)
,则下列结论正确的是(  )
分析:利用正弦函数的性质对A,B,C,D四个选项逐个判断即可得到答案.
解答:解:对于A,当x=
π
3
时,f(x)=0,不是最值,所以A错;
对于B,当x=
π
4
时,f(x)=
1
3
≠0,所以B错;
∵f(x)的增区间为[-
π
6
+kπ,
π
12
+kπ](k∈Z),所以在[0,
π
6
]上不是增函数,故C错;
把f(x)的图象向左平移
π
12
个单位得到函数:
g(x)=f(x+
π
12

=sin[2(x+
π
12
)+
π
3
]
=cos2x为偶函数,故D正确.
故选D.
点评:本题考查函数y=Asin(ωx+φ)的图象变换,考查正弦函数的对称性,考查分析、运算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•安徽模拟)设函数f(x)=sin(x+
π
6
)+2sin2
x
2
,x∈[0,π]

(Ⅰ)求f(x)的值域;
(Ⅱ)记△ABC的内角A、B、C的对边长分别为a,b,c,若f(B)=1,b=1,c=
3
,求a
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin(ωx+φ)(ω>0,-
π
2
<φ<
π
2
)
,给出以下四个论断:
①它的图象关于直线x=
π
12
对称;     
②它的图象关于点(
π
3
,0)
对称;
③它的周期是π;                   
④在区间[0,
π
6
)
上是增函数.
以其中两个论断作为条件,余下的一个论断作为结论,写出你认为正确的命题:
条件
①③
①③
结论
;(用序号表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin(ωx+
π
4
)(x∈R,ω>0)
的部分图象如图所示.
(1)求f(x)的表达式;
(2)若f(x)•f(-x)=
1
4
x∈(
π
4
π
2
)
,求tanx的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sinωx+2
3
sin2
ωx
2
(ω>0)的最小正周期为
3

(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若将y=f(x)的图象向左平移
π
2
个单位可得y=g(x)的图象,求不等式g(x)≥2
3
的解集.

查看答案和解析>>

同步练习册答案