精英家教网 > 高中数学 > 题目详情

已知函数,曲线在点处的切线为,若时,有极值.

(1)求的值;

(2)求上的最大值和最小值.

【解析】(1)根据可建立关于a,b,c的三个方程,解方程组即可.

(2)在(1)的基础上,利用导数列表求极值,最值即可.

 

【答案】

(1)由得,    1分

时,切线的斜率为3,可得    ①                   2分

时,有极值,得                        3分

可得  ②

由①②解得                                        4分

由于切点的横坐标为

                                                        5分

(2)由(1)可得

                                           6分

,得                                   7分

变化时,的取值及变化如下表:               

真确列出表得                                                    9分

 

1

             

+

0

-

0

+

 

 

13

 

 

4

∴ y=f(x)在[-3,1]上的最大值为13,最小值为                     

 

练习册系列答案
相关习题

科目:高中数学 来源:2013-2014学年山西省高三上学期期中考试文科数学试卷(解析版) 题型:解答题

已知函数,曲线在点处切线方程为.

(1)求的值;

(2)讨论的单调性,并求的极大值.

 

查看答案和解析>>

科目:高中数学 来源:2014届辽宁朝阳高二下学期期中考试理科数学试卷(解析版) 题型:解答题

已知函数,曲线在点处的切线为,若时,有极值.

(1)求的值;

(2)求上的最大值和最小值.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年内蒙古巴彦淖尔市高三9月月考理科数学试卷(解析版) 题型:解答题

已知函数,曲线在点处的切线方程为

(Ⅰ)求的值;

(Ⅱ)证明:当,且时,.

 

查看答案和解析>>

科目:高中数学 来源:2013届甘肃省高二4月月考(期中)数学试卷(解析版) 题型:解答题

已知函数,曲线在点处的切线为,若时,有极值.

(1)求的值;

(2)求上的最大值和最小值.

 

查看答案和解析>>

科目:高中数学 来源:2013届安徽省蚌埠市高二下学期期中联考文科数学试卷(解析版) 题型:解答题

(本小题满分15分)已知函数,曲线在点处的切线为时,有极值.

(1)求的值;

(2)求上的最大值和最小值.

 

查看答案和解析>>

同步练习册答案