【题目】如图,在斜三棱柱中,底面为正三角形,面⊥面, ,
.
(1)求异面直线与所成角的余弦值;
(2)设为的中点,求面与面所成角的正弦值.
【答案】(1)与所成角的余弦值为0. (2)
【解析】试题分析:(1)可设,取的中点,连接,先证明,再由面面垂直的性质可得,因此两两互相垂直.以为坐标原点, 为正交基底,建立空间直角坐标系,分别求出, ,可得,从而得异面直线与所成角的余弦值;(2)利用向量垂直数量积为零列方程组,分别求出平面的一个法向量与平面的一个法向量,利用空间向量夹角的余弦公式可得面与面所成角的余弦值,进而可得正弦值.
试题解析:不妨设,取的中点,连接,
因为底面为正三角形,则,且,
因为,所以,
又因为 面面,面面 , 面,
所以,因此两两互相垂直.以为坐标原点, 为正交基底,建立如图所示的空间直角坐标系,则
,
,
(1)由已知得, ,
又,即,所以,
所以与所成角的余弦值为0.
(2)由已知得, ,设平面的法向量
则,即,令,则
即平面一个法向量;
又, ,设平面的法向量,则
,即,令,则
即平面一个法向量;
又,记面与面所成的角为, ,则
,所以
【方法点晴】本题主要考查利用空间向量求二面角,利用空间向量求异面直线所成的角,属于难题. 空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.
科目:高中数学 来源: 题型:
【题目】如图,直线l:y=x+b (b>0),抛物线C:y2=2px(p>0),已知点P(2,2)在抛物线C上,且抛物线C上的点到直线l的距离的最小值为.
(1)求直线l及抛物线C的方程;
(2)过点Q(2,1)的任一直线(不经过点P)与抛物线C交于A,B两点,直线AB与直线l相交于点M,记直线PA,PB,PM的斜率分别为k1,k2,k3.问:是否存在实数λ,使得k1+k2=λk3?若存在,试求出λ的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有一矩形硬纸板材料(厚度忽略不计),一边长为6分米,另一边足够长.现从中截取矩形(如图甲所示),再剪去图中阴影部分,用剩下的部分恰好能折卷成一个底面是弓形的柱体包装盒(如图乙所示,重叠部分忽略不计),其中是以为圆心、的扇形,且弧,分别与边, 相切于点, .
(1)当长为1分米时,求折卷成的包装盒的容积;
(2)当的长是多少分米时,折卷成的包装盒的容积最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,直线l经过点P(2,0),其倾斜角为,在以原点O为极点,x轴非负半轴为极轴的极坐标系中(取相同的长度单位),曲线C的极坐标方程为.
(Ⅰ)若直线l与曲线C有公共点,求倾斜角的取值范围;
(Ⅱ)设M(x,y)为曲线C上任意一点,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知下列命题:
①从匀速传递的产品生产流水线上,质检员每30分钟从生产流水线中抽取一件产品进行某项指标检测,这样的抽样方法是系统抽样;
②两个变量的线性相关程度越强,则相关系数的值越接近于1;
③两个分类变量与的观测值,若越小,则说明“与有关系”的把握程度越大;
④随机变量~,则.
其中为真命题的是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知坐标平面上动点与两个定点, ,且.
(1)求点的轨迹方程,并说明轨迹是什么图形;
(2)记(1)中轨迹为,过点的直线被所截得的线段长度为8,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地区2007年至2013年农村居民家庭纯收入y(单位:千元)的数据如下表:
(1)求关于的线性回归方程;
(2)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:
,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在几何体中,四边形为矩形,四边形为梯形, ,平面与平面垂直,且.
(1)求证: 平面;
(2)若,且平面与平面所成锐二面角的余弦值为,求的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com