精英家教网 > 高中数学 > 题目详情

【题目】已知圆的圆心为原点,且与直线相切.

1)求圆的方程;

2)点在直线上,过点引圆的两条切线,切点为,求证:直线恒过定点.

3)求的取值范围.

【答案】12)证明见解析(3

【解析】

根据题意,设圆C的半径为r,由直线与圆的位置关系可得,即可得圆的标准方程;
,求出的值,求出以P为圆心,PA为半径为圆的方程,分析可得直线AB为圆C与圆P的公共弦所在的直线,联立2个圆的方程,即可得直线AB的方程,分析可得结论;
根据题意,设,在中,可得,由数量积的计算公式可得,结合b的范围分析可得答案.

1)由题知圆的半径

∴圆的方程为

2)设点,

∴圆的方程为:

又圆方程为:

由①②得即为

∴直线方程为:

∴直线过定点

3)设,则

的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆C过点M0-2)、N(3,1),且圆心C在直线x+2y+1=0上.

(1)求圆C的方程;

(2)设直线ax-y+1=0与圆C交于AB两点,是否存在实数a,使得过点P(2,0)的直线l垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)求函数的最小正周期;

(2)常数,若函数在区间上是增函数,求的取值范围;

(3)若函数的最大值为2,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求证:上的奇函数;

2)求的值;

3)求证:上单调递增,在上单调递减;

4)求上的最大值和最小值;

5)直接写出一个正整数,满足

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为,其中为参数,在以坐标原点为极点, 轴的正半轴为极轴的极坐标系中,点的极坐标为, 直线的极坐标方程为.

(1)求直线的直角坐标方程与曲线的普通方程;

(2)若是曲线上的动点, 为线段的中点.求点到直线的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的上顶点为,且过点

(1)求椭圆的方程及其离心率;

(2)斜率为的直线与椭圆交于两个不同的点,当直线的斜率之积是不为0的定值时,求此时的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】幻彩摩天轮位于中山市西区兴中广场C4层高的建筑之上,与中山市第一家四星级酒店——富华酒店隔河相望,其外观是参考世界最高的摩天轮新加坡飞行者的设计,轮体上有36个吊舱,共可同时承载288人从高空俯瞰岐江一河两岸的美景幻彩摩天轮直径为83m,每20min转一圈,最高点离地108m,摩天轮上的点P的起始位置在最低点处已知在时刻tmin)时P距离地面的高度,(其中),

1)求的函数解析式

2)当离地面m以上时,可以俯瞰富华酒店顶楼,求转一圈中有多少时间可以俯瞰富华酒店顶楼?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数()的部分图象如图所示.

(1)求函数的解析式;

(2)求函数的最小值及取到最小值时自变量x的集合;

(3)将函数图像上所有点的纵坐标不变,横坐标变为原来的()倍,得到函数的图象.若函数在区间上恰有5个零点,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)||,实数mn满足0mn,且f(m)f(n),若f(x)[m2n]上的最大值为2,则________.

查看答案和解析>>

同步练习册答案