精英家教网 > 高中数学 > 题目详情
附加题
(1)已知关于x的方程|x2-1|=a|x-1|只有一个实数解,则实数a的取值范围为______
(2)设[x]是不超过x的最大整数,则[log31]+[log32]+[log33]+…[log3100]=______.
【答案】分析:(1)将方程变形,利用x=1已是该方程的根,从而欲原方程只有一解,即要求方程|x+1|=a有且仅有一个等于1的解或无解,从而可求实数a的取值范围.
(2)由题意知[log31]+[log32]=0,先根据对数的运算性质判断[log33]…[log3100]的大小,最后加起来即可求解.
解答:解:(1)|x2-1|=a|x-1|,变形得|x-1|(|x+1|-a)=0,
显然,x=1已是该方程的根,从而欲使原方程只有一解,
即要求方程|x+1|=a有且仅有一个等于1的解或无解,
若x=1,则a=2,此时方程有两解,
∴只能方程|x+1|=a无解
∴a<0.
(2)由题意可知:设[log3a]=b
log3a=b+x,a,b为整数
a=3b+x,0≤x<1,
因为y=3x为单调增函数
当a在[1,2]时
因为3=1,31=3
则0<b+x<1
所以b=0时,[log31]+[log32]=0
当a在[3,8]时
同理1<b+x<2
b=1时,[log33]+[log34]+…+[log38]=1×6
b=2时,[log39]+[log310]+…+[log326]=2×18.
b=3时,[log327]+[log328]+…+[log380]=3×54.
b=4时,[log381]+[log382]+…+[log3100]=4×20.
∴[log31]+[log32]+[log33]+[log34]+…+[log3100]=1×6+2×18+3×54+4×20=284;
点评:本题考查方程根的问题,考查学生分析解决问题的能力,第二问是一个新定义,[x]是不超过x的最大整数,此题是一道中档题;
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

附加题
(1)已知关于x的方程|x2-1|=a|x-1|只有一个实数解,则实数a的取值范围为
a<0
a<0

(2)设[x]是不超过x的最大整数,则[log31]+[log32]+[log33]+…[log3100]=
284
284

查看答案和解析>>

科目:高中数学 来源: 题型:

附加题:(选做题:在下面A、B、C、D四个小题中只能选做两题)
A.选修4-1:几何证明选讲
如图,已知AB、CD是圆O的两条弦,且AB是线段CD的垂直平分线,
已知AB=6,CD=2
5
,求线段AC的长度.
B.选修4-2:矩阵与变换
已知二阶矩阵A有特征值λ1=1及对应的一个特征向量e1=
1
1
和特征值λ2=2及对应的一个特征向量e2=
1
0
,试求矩阵A.
C.选修4-4:坐标系与参数方程
在直角坐标系xOy中,已知曲线C的参数方程是
y=sinθ+1
x=cosθ
(θ是参数),若以O为极点,x轴的正半轴为极轴,取与直角坐标系中相同的单位长度,建立极坐标系,求曲线C的极坐标方程.
D.选修4-5:不等式选讲
已知关于x的不等式|ax-1|+|ax-a|≥1(a>0).
(1)当a=1时,求此不等式的解集;
(2)若此不等式的解集为R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年福建省莆田八中高一(上)期中数学试卷(解析版) 题型:解答题

附加题
(1)已知关于x的方程|x2-1|=a|x-1|只有一个实数解,则实数a的取值范围为______
(2)设[x]是不超过x的最大整数,则[log31]+[log32]+[log33]+…[log3100]=______.

查看答案和解析>>

科目:高中数学 来源:2011年江苏省高考数学仿真押题试卷(01)(解析版) 题型:解答题

附加题:(选做题:在下面A、B、C、D四个小题中只能选做两题)
A.选修4-1:几何证明选讲
如图,已知AB、CD是圆O的两条弦,且AB是线段CD的垂直平分线,
已知AB=6,CD=2,求线段AC的长度.
B.选修4-2:矩阵与变换
已知二阶矩阵A有特征值λ1=1及对应的一个特征向量和特征值λ2=2及对应的一个特征向量,试求矩阵A.
C.选修4-4:坐标系与参数方程
在直角坐标系xOy中,已知曲线C的参数方程是(θ是参数),若以O为极点,x轴的正半轴为极轴,取与直角坐标系中相同的单位长度,建立极坐标系,求曲线C的极坐标方程.
D.选修4-5:不等式选讲
已知关于x的不等式|ax-1|+|ax-a|≥1(a>0).
(1)当a=1时,求此不等式的解集;
(2)若此不等式的解集为R,求实数a的取值范围.

查看答案和解析>>

同步练习册答案