精英家教网 > 高中数学 > 题目详情

【题目】如图,准备在墙上钉一个支架,支架由两直杆AC与BD 焊接而成,焊接点 D 把杆AC 分成 AD CD 两段,其中两固定点A,B 间距离为1 米,AB 与杆 AC 的夹角为60 ,杆AC 长为 1 米,若制作 AD 段的成本为a 元/米,制作 CD 段的成本是 2a 元/米,制作杆BD 成本是 3a 元/米. 设 ADB ,则制作整个支架的总成本记为 S 元.

(1)求S关于 的函数表达式,并求出的取值范围;

(2)问 段多长时S最小?

【答案】(1) ;(2) 时S最小.

【解析】试题分析:在,由正弦定理得进而利用三角形的面积公式,得到关于的表达式即的取值范围.

(2)求德,得到函数的单调性,即可得到函数的极值与最值.

试题解析:

(1)在△ABD中,由正弦定理得

所以

由题意得.

(2)令

0

单调递减

极大值

单调递增

所以当时,S最小,此时

∴ 当时S最小.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知各项均为正数的数列{an}的前n项和为Sn , 向量 =(Sn , an+1), =(an+1,4)(n∈N*),且
(1)求{an}的通项公式
(2)设f(n)= bn=f(2n+4),求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中正确的命题个数是( )

. 如果共面, 也共面,共面;

.已知直线a的方向向量与平面,若// ,则直线a// ;

③若共面,则存在唯一实数使,反之也成立;

.对空间任意点O与不共线的三点ABC,若=x+y+z

(其中xyz∈R),则PABC四点共面.

A. 3 B. 2 C. 1 D. 0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx+ (a>0).
(1)求函数f(x)在[1,+∞)上的最小值;
(2)若存在三个不同的实数xi(i=1,2,3)满足f(x)=ax.
(i)证明:a∈(0,1),f( )>
(ii)求实数a的取值范围及x1x2x3的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如下表:

年 份

2007

2008

2009

2010

2011

2012

2013

年份代号t

1

2

3

4

5

6

7

人均纯收入y

2.9

3.3

3.6

4.4

4.8

5.2

5.9

(1)求y关于t的线性回归方程;

(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.

附:回归直线的斜率和截距的最小二乘估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,圆x2+y2=8内有一点P(-1,2),AB为过点P且倾斜角为α的弦.

(1)当弦AB被点P平分时,求直线AB的方程;

(2)求过点P的弦的中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱锥P-ABCD中,AD⊥面PABBC⊥面PAB,底面ABCD为梯形,AD=4,BC=8,AB=6,∠APD=∠CPB,满足上述条件的四棱锥的顶点P的轨迹是(  )

A. 圆的一部分 B. 椭圆的一部分

C. 球的一部分 D. 抛物线的一部分

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=log2x+a).

(Ⅰ)当a=1时,若fx)+fx-1)>0成立,求x的取值范围;

(Ⅱ)若定义在R上奇函数gx)满足gx+2)=-gx),且当0≤x≤1时,gx)=fx),求gx)在[-3,-1]上的解析式,并写出gx)在[-3,3]上的单调区间(不必证明);

(Ⅲ)对于(Ⅱ)中的gx),若关于x的不等式g)≥g(-)在R上恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,圆的方程为为参数).以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的单位长度,直线的极坐标方程为

(1)当时,判断直线与圆的关系

2)当上有且只有一点到直线的距离等于时,求上到直线距离为的点的坐标.

查看答案和解析>>

同步练习册答案