精英家教网 > 高中数学 > 题目详情
1.已知向量$\overrightarrow{m}$=(x,y),向量$\overrightarrow{v}$=(x+2y,tan$\frac{x}{2}$tany)的对应关系可用$\overrightarrow{v}$=f($\overrightarrow{m}$)表示,试求在向量$\overrightarrow{m}$=(α,β)(α,β∈(0,$\frac{π}{2}$)),使得f($\overrightarrow{m}$)=($\frac{2π}{3}$,2-$\sqrt{3}$)成立?如果存在,求$\overrightarrow{m}$,如果不存在,请说明理由.

分析 假设f($\overrightarrow{m}$)=$(α+2β,tan\frac{α}{2}tanβ)$=($\frac{2π}{3}$,2-$\sqrt{3}$)成立,可得$\left\{\begin{array}{l}{α+2β=\frac{2π}{3}}\\{tan\frac{α}{2}tanβ=2-\sqrt{3}}\end{array}\right.$,利用和差公式可得:tan2β-$(3\sqrt{3}-3)$tanβ+$(2-\sqrt{3})$=0,解出:tanβ=1或tanβ=2-$\sqrt{3}$.分别解出即可.

解答 解:假设f($\overrightarrow{m}$)=$(α+2β,tan\frac{α}{2}tanβ)$=($\frac{2π}{3}$,2-$\sqrt{3}$)成立,
∴$\left\{\begin{array}{l}{α+2β=\frac{2π}{3}}\\{tan\frac{α}{2}tanβ=2-\sqrt{3}}\end{array}\right.$,
∴$tan(\frac{π}{3}-β)$tanβ=2-$\sqrt{3}$,
化为$\frac{(\sqrt{3}-tanβ)tanβ}{1+\sqrt{3}tanβ}$=2-$\sqrt{3}$,
化为tan2β-$(3\sqrt{3}-3)$tanβ+$(2-\sqrt{3})$=0,
∵α,β∈(0,$\frac{π}{2}$),
∴tanβ>0,
解出:tanβ=1或tanβ=2-$\sqrt{3}$.
由tanβ=1,解得β=$\frac{π}{4}$,α=$\frac{π}{6}$.
由tanβ=2-$\sqrt{3}$,可得β=$\frac{π}{12}$,$α=\frac{π}{2}$,舍去.
综上可得:β=$\frac{π}{4}$,α=$\frac{π}{6}$.
∴$\overrightarrow{m}$=$(\frac{π}{6},\frac{π}{4})$.

点评 本题考查了新定义、正切的和差公式、三角函数求值,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.若函数f(x)=ax-1的图象经过点(4,2),则函数g(x)=loga$\frac{1}{x+1}$的图象是④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设x,y满足约束条件$\left\{\begin{array}{l}{2x-y+2≥0}\\{8x-y-4≤0}\\{x≥0,y≥0}\end{array}\right.$,若目标函数z=ax+by(a>0,b>0)的最大值为16,求ab的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在等差数列{an}中,a6=10,S6=75,那么(  )
A.首项a1=-1,公差d=13B.首项a1=15,公差d=-1
C.首项a1=-3,公差d=2D.首项a1=3,公差d=-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知两点A(2,3)与B(4,5),且直线是线段AB的垂直平分线,圆的方程为x2+y2-2x-2y-$\frac{21}{2}$=0,解答下列问题:
(1)求直线的方程;
(2)判断直线与圆之间的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某家庭进行理财投资,投资债券产品的收益f(x)与投资额x成正比,投资股票产品的收益g(x)与投资额x的算术平方根成正比,已知投资1万元时两类产品的收益分别是0.125万元和0.5万元.
(1)分别写出两种产品的收益与投资的函数关系式;
(2)该家庭现有20万资金,全部用于理财投资,问:怎样分配资金能使投资获得最大收益,其最大收益是多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在一般情况下,大桥上的车流速度v(单位:千米/时)是车流密度x(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当0≤x≤20时,车流速度v为60千米/时.研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.
(1)当0≤x≤200时,求函数v(x)的表达式;
(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/时)f(x)=x•v(x)可以达到最大,并求出最大值.(精确到1辆/时)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若2x+3y+z=7,则x2+y2+z2的最小值为$\frac{7}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数$y=\sqrt{lgx}+lg(5-3x$)的定义域是(  )
A.[0,$\frac{5}{3}$ )B.[0,$\frac{5}{3}$]C.[1,$\frac{5}{3}$ )D.[1,$\frac{5}{3}$]

查看答案和解析>>

同步练习册答案