精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆C: =1(a>b>0)过点A(0,3),与双曲线 =1有相同的焦点
(1)求椭圆C的方程;
(2)过A点作两条相互垂直的直线,分别交椭圆C于P,Q两点,则PQ是否过定点?若是,求出定点的坐标,若不是,请说明理由.

【答案】
(1)解:双曲线 =1的焦点坐标为(3 ,0),(﹣3 ,0),

可得椭圆中的c=3 ,由椭圆过点A(0,3),可得b=3,

则a= =6,

则椭圆的方程为 + =1


(2)解:设P(x1,y1),Q(x2,y2),直线AP的斜率为k,直线AQ的斜率为﹣

直线AP的方程为y=kx+3,代入椭圆x2+4y2﹣36=0,

可得(1+4k2)x2+24kx=0,

解得x1=﹣ ,y1=kx1+3=

即有P(﹣ ),

将上式中的k换为﹣ ,可得Q( ),

则直线PQ的斜率为kPQ= =

直线PQ的方程为y﹣ = (x+ ),

可化为x(k2﹣1)﹣(5y+9)k=0,

可令x=0,5y+9=0,即x=0,y=﹣

则PQ过定点(0,﹣


【解析】(1)求得双曲线的焦点坐标,可得椭圆的c,由A点,可得b,求得a,即可得到椭圆方程;(2)设P(x1 , y1),Q(x2 , y2),直线AP的斜率为k,直线AQ的斜率为﹣ ,直线AP的方程为y=kx+3,代入椭圆方程,求得P的坐标,k换为﹣ ,可得Q的坐标,求出直线PQ的斜率,以及方程,整理可得恒过定点.
【考点精析】本题主要考查了椭圆的标准方程的相关知识点,需要掌握椭圆标准方程焦点在x轴:,焦点在y轴:才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn(n∈N*),且满足: ①|a1|≠|a2|;
②r(n﹣p)Sn+1=(n2+n)an+(n2﹣n﹣2)a1 , 其中r,p∈R,且r≠0.
(1)求p的值;
(2)数列{an}能否是等比数列?请说明理由;
(3)求证:当r=2时,数列{an}是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在边长为4的长方形ABCD中,动圆Q的半径为1,圆心Q在线段BC(含端点)上运动,P是圆Q上及内部的动点,设向量 =m +n (m,n为实数),则m+n的取值范围是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cos(2x+φ),且 f(x)dx=0,则下列说法正确的是(
A.f(x)的一条对称轴为x=
B.存在φ使得f(x)在区间[﹣ ]上单调递减
C.f(x)的一个对称中心为( ,0)
D.存在φ使得f(x)在区间[ ]上单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过抛物线y2=2px(p>0)的焦点F的直线l与抛物线交于BC两点,l与抛物线的准线交于点A,且|AF|=6,=2

(1)求抛物线方程.

(2)求|BC|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆M的圆心在直线上,且经过点A-30),B12).

(1)求圆M的方程;

2)直线与圆M相切,且y轴上的截距是x轴上截距的两倍,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校在2012年的自主招生考试成绩中随机抽取100名中学生的笔试成绩,按成绩分组,得到的频率分布表如下所示.

组号

分组

频数

频率

1

[160,165)

5

0.050

2

[165,170)

0.350

3

[170,175)

30

4

[175,180)

20

0.200

5

[180,185)

10

0.100

合计

100

1.00

(1)请先求出频率分布表中①②位置的相应数据,再完成频率分布直方图,并从频率分布直方图中求出中位数(中位数保留整数);

(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,从这6名学生中随机抽取2名学生接受A考官进行面试,求:第4组至少有一名学生被考官A面试的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1,直线l过点M(﹣1,0),与椭圆C交于A,B两点,交y轴于点N.
(1)设MN的中点恰在椭圆C上,求直线l的方程;
(2)设 ,试探究λ+μ是否为定值,若是,求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图的程序框图,为使输出S的值小于91,则输入的正整数N的最小值为( )

A.5
B.4
C.3
D.2

查看答案和解析>>

同步练习册答案