精英家教网 > 高中数学 > 题目详情
5.设函数f(x)=x2-2x+3(x∈[t,t+1])的最小值为g(t),求g(t)的表达式.

分析 先求出函数f(x)的对称轴x=1,从而可讨论区间[t,t+1]和对称轴的关系:分t+1≤1,t<1<t+1,和t≥1三种情况,然后根据二次函数在[t,t+1]上的单调性及取得顶点情况便可求出每种情况的f(x)的最小值,从而得出g(t)的表达式.

解答 解:f(x)的对称轴为x=1;
①t+1≤1,即t≤0时,f(x)在[t,t+1]上单调递减;
∴f(t+1)=t2+2是f(x)的最小值;
②t<1<t+1,即0<t<1时,f(1)=2是f(x)的最小值;
③t≥1时,f(x)在[t,t+1]上单调递增;
∴f(t)=t2-2t+3是f(x)的最小值;
∴综上得,$g(t)=\left\{\begin{array}{l}{{t}^{2}+2}&{t≤0}\\{2}&{0<t<1}\\{{t}^{2}-2t+3}&{t≥1}\end{array}\right.$.

点评 考查二次函数的对称轴,二次函数的单调性,以及根据单调性的定义求函数在闭区间上的最小值,以及根据抛物线顶点求二次函数最小值的方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.若定义域为R的奇函数f(x)=$\frac{x+n}{{{x^2}+m}}$在区间$(1,\frac{3}{2}]$上没有最小值,则实数m的取值范围是(  )
A.(0,2]B.$[\frac{3}{2},2]$C.$[\frac{3}{2},+∞)$D.$(\frac{3}{2},+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.过点(-2,3),倾斜角等于直线2x-y+3=0的倾斜角的直线方程为(  )
A.-2x+y-7=0B.-x+2y-8=0C.2x+y+1=0D.x+2y-4=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知△ABC的三边长分别为AB=5,BC=4,AC=3,M是AB边上的点,P是平面ABC外一点,给出下列四个命题:
①若PA⊥平面ABC,则三棱锥P-ABC的四个面都是直角三角形;
②若PM⊥平面ABC,且M是AB边的中点,则有PA=PB=PC;
③若PC=5,PC⊥平面ABC,则△PCM面积的最小值为$\frac{15}{2}$;
④若PB=5,PB⊥平面ABC,则三棱锥P-ABC的外接球体积为$\frac{125\sqrt{2}π}{3}$;
其中正确命题是①②④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数y=log2|x|的图象特点为(  )
A.关于x轴对称B.关于y轴对称C.关于原点对称D.关于直线y=x对称

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设Sn是等比数列{an}的前n项和,若$\frac{{{S_{504}}}}{{{S_{1008}}}}$=$\frac{1}{10}$,则$\frac{{{S_{1008}}}}{{{S_{2016}}}}$=(  )
A.$\frac{1}{26}$B.$\frac{1}{82}$C.$\frac{2}{5}$D.$\frac{10}{729}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在西非肆虐的“埃博拉病毒”的传播速度很快,这已经成为全球性的威胁.为了考察某种埃博拉病毒疫苗的效果,现随机抽取100只小鼠进行试验,得到如下列联表:
感染未感染总计
服用104050
未服用203050
总计3070100
附表:
P(K2≥k)0.100.050.025
k2.763.8415.024
参照附表,下列结论正确的是(  )
A.在犯错误的概率不超5%过的前提下,认为“小动物是否被感染与有没有服用疫苗有关”
B.在犯错误的概率不超5%过的前提下,认为“小动物是否被感染与有没有服用疫苗无关”
C.有97.5%的把握认为“小动物是否被感染与有没有服用疫苗有关”
D.有97.5%的把握认为“小动物是否被感染与有没有服用疫苗无关”

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=x2-2(a+2)x+a2,g(x)=-x2+2(a-2)x-a2+8.设H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)},若max{p,q}表示p,q中的较大值,min{p,q}表示p,q中的较小值.记H1(x)的最小值为A,H2(x)的最大值为B,则B-A=16.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知全集U=R,集合A={x|x+1<0},B={x|x2+3x<0},则 A∩B等于(  )
A.{x|-3<x<0}B.{x|-3<x<-1}C.{x|x<-1}D.{x|-1≤x<0}

查看答案和解析>>

同步练习册答案