精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=sin(ωx+$\frac{π}{3}$)(ω>0),若f($\frac{π}{6}$)=f($\frac{π}{4}$),且f(x)在区间($\frac{π}{6}$,$\frac{π}{4}$)内有最大值,无最小值,则ω=$\frac{4}{5}$,或$\frac{52}{5}$,或20.

分析 由题意可得函数的图象关于直线x=$\frac{\frac{π}{6}+\frac{π}{4}}{2}$=$\frac{5π}{24}$对称,求得ω=$\frac{24k+4}{5}$,k∈Z.再根据ω•$\frac{π}{6}$+$\frac{π}{3}$≥kπ-$\frac{π}{2}$,ω•$\frac{π}{4}$+$\frac{π}{3}$≤kπ+$\frac{3π}{2}$,求得ω 的范围.综合求得ω的值.

解答 解:∵函数f(x)=sin(ωx+$\frac{π}{3}$)(ω>0),若f($\frac{π}{6}$)=f($\frac{π}{4}$),
可得函数的图象关于直线x=$\frac{\frac{π}{6}+\frac{π}{4}}{2}$=$\frac{5π}{24}$对称,
再根据f(x)在区间($\frac{π}{6}$,$\frac{π}{4}$)内有最大值,无最小值,$\frac{5π}{24}$∈($\frac{π}{6}$,$\frac{π}{4}$),
可得ω•$\frac{5π}{24}$+$\frac{π}{3}$=2kπ+$\frac{π}{2}$,即ω=$\frac{48k+4}{5}$,k∈Z①.
还可得ω•$\frac{π}{6}$+$\frac{π}{3}$≥2kπ-$\frac{π}{2}$,且ω•$\frac{π}{4}$+$\frac{π}{3}$≤2kπ+$\frac{3π}{2}$,
求得 12k-5≤ω≤8k+$\frac{14}{3}$,k∈Z②.
综上①②可得,ω=$\frac{4}{5}$,或ω=$\frac{52}{5}$,或ω=20,
故答案为:$\frac{4}{5}$,或$\frac{52}{5}$,或 20.

点评 本题主要考查正弦函数的图象特征,正弦函数的单调性,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.设函数f(x)=|x-a|+|x-2|.
(1)当a=2时,求不等式f(x)≤14的解集;
(2)若f(x)≥a2对x∈R恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知圆的方程为x2+y2-2ax-b2=0,则过点P(a,b)的直线与圆有1或2个公共点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.金红石(TiO2)的晶胞如图所示,图中色点代表钛原子,黑点代表氧原子.长方体的8个顶点和中心是钛原子,4个氧原子的位置是A(0.31a,0.31b,0),B(0.69a,0.69b,0),C(0.81a,0,0.5c)和D(0.19a,0.81b,0.5c).中心处钛原子与A处氧原子间的距离叫做键长.当a=b时,试求键长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.抛物线x2=2y离点A(0,a)(a>0)最近的点恰好是顶点,这个结论成立的充要条件是(  )
A.a>0B.a≥1C.0<a≤$\frac{1}{2}$D.0<a≤1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知$\overrightarrow{OA}$=(sin$\frac{x}{3}$,$\sqrt{3}$cos$\frac{x}{3}$),$\overrightarrow{OB}$=(cos$\frac{x}{3}$,cos$\frac{x}{3}$)(x∈R),f(x)=$\overrightarrow{OA}$•$\overrightarrow{OB}$.
(1)求函数f(x)的解析式,并求图象的对称中心的横坐标;
(2)若x∈(0,π],方程f(x)=a有两个不同的解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1,且|k$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{3}$|$\overrightarrow{a}$-k$\overrightarrow{b}$|,(k>0),令函数f(k)=$\overrightarrow{a}$•$\overrightarrow{b}$
(1)求f(k)的表达式(用k表示)
(2)求f(k)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.椭圆$\frac{x^2}{3}+\frac{y^2}{2}=1$的焦点坐标是(  )
A.(0,±1)B.(±1,0)C.$(0,±\sqrt{2})$D.$(±\sqrt{2},0)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个顶点为A(2,0),离心率为$\frac{\sqrt{2}}{2}$.直线y=x-1与椭圆C交于不同的两点M,N.
(1)求椭圆C的标准方程;
(2)求线段MN的长度.

查看答案和解析>>

同步练习册答案