精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1)当求函数的图象在处的切线方程

(2)若函数在定义域上为单调增函数

①求最大整数值

②证明:

【答案】122见解析

【解析】试题分析:(1)将代入到函数再对求导分别求出即可求出切线方程;(2若函数在定义域上为单调增函数,则恒成立,则先证明,构造新函数,求出单调性,再同理可证,即可求出的最大整数值;②由①得,令,可得,累加后利用等比数列求和公式及放缩法即可得证.

试题解析:(1)当

则所求切线方程为

2)由题意知,

若函数在定义域上为单调增函数恒成立

①先证明.设

则函数上单调递减上单调递增

同理可证

恒成立

不恒成立

综上所述 的最大整数值为2

②由①知,

由此可知 .当

累加得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某协会对两家服务机构进行满意度调查,在两家服务机构提供过服务的市民中随机抽取了人,每人分别对这两家服务机构进行独立评分,满分均为分.整理评分数据,将分数以为组距分成组:,得到服务机构分数的频数分布表,服务机构分数的频率分布直方图:

定义市民对服务机构评价的“满意度指数”如下:

分数

满意度指数

0

1

2

(1)在抽样的人中,求对服务机构评价“满意度指数”为的人数;

(2)从在两家服务机构都提供过服务的市民中随机抽取人进行调查,试估计对服务机构评价的“满意度指数”比对服务机构评价的“满意度指数”高的概率;

(3)如果从服务机构中选择一家服务机构,以满意度出发,你会选择哪一家?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】年底某购物网站为了解会员对售后服务(包括退货、换货、维修等)的满意度,从年下半年的会员中随机调查了个会员,得到会员对售后服务的满意度评分如下:

根据会员满意度评分,将会员的满意度从低到高分为三个等级:

满意度评分

低于

分到

不低于

满意度等级

不满意

比较满意

非常满意

(1)根据这个会员的评分,估算该购物网站会员对售后服务比较满意和非常满意的频率;

(2)以(1)中的频率作为概率,假设每个会员的评价结果相互独立.

(i)若从下半年的所有会员中随机选取个会员,求恰好一个评分比较满意,另一个评分非常满意的概率;

(ii)若从下半年的所有会员中随机选取个会员,记评分非常满意的会员的个数为,求的分布列,数学期望及方差.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右顶点与抛物线的焦点重合,椭圆的离心率为,过椭圆的右焦点且垂直于轴的直线截抛物线所得的弦长为.

(1)求椭圆和抛物线的方程;

(2)过点的直线交于两点,点关于轴的对称点为,证明:直线恒过一定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 .

1)当时,讨论的单调性;

(2)当时, 恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校初三年级有名学生,随机抽查了名学生,测试分钟仰卧起坐的成绩(次数),将数据整理后绘制成如图所示的频率分布直方图.用样本估计总体,下列结论正确的是( )

A. 该校初三年级学生分钟仰卧起坐的次数的中位数为

B. 该校初三年级学生分钟仰卧起坐的次数的众数为

C. 该校初三年级学生分钟仰卧起坐的次数超过次的人数约有

D. 该校初三年级学生分钟仰卧起坐的次数少于次的人数约为人.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,以坐标原点为极点,以轴正半轴为极轴,建立极坐标系.曲线的极坐标方程为,曲线的参数方程为为参数)

(1)求曲线的直角坐标方程及曲线的极坐标方程;

(2)当)时在曲线上对应的点为,若的面积为,求点的极坐标,并判断是否在曲线上(其中点为半圆的圆心)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 其中为自然对数的底数.

(Ⅰ)讨论函数的单调性.

(Ⅱ)是否存在实数使对任意恒成立若存在试求出的值若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2017·贵州适应性考试)如图,在正方体ABCDA1B1C1D1中,点P是线段A1C1上的动点,则三棱锥PBCD 的俯视图与正视图面积之比的最大值为(  )

A. 1 B.

C. D. 2

查看答案和解析>>

同步练习册答案