精英家教网 > 高中数学 > 题目详情
如图所示,在长方体ABCD-A1B1C1D1中,AB=BC=1,BB1=2,连结A1C、BD.
(Ⅰ)求证:A1C⊥BD;
(Ⅱ)求三棱锥A1-BCD的体积.

【答案】分析:(Ⅰ)利用线面垂直的性质先证明BD⊥平面A1AC,然后再证:A1C⊥BD;
(Ⅱ)根据锥体的体积公式求体积即可.
解答:解:(Ⅰ)证明:连AC.
∵AB=BC,
∴BD⊥AC.                                             …(2分)
∵A1A⊥底面ABCD,
∴BD⊥A1A.                    …(4分)
∵A1A?平面A1AC,AC?平面A1AC,A1A∩AC=A,
∴BD⊥平面A1AC.              …(6分)
∴BD⊥A1C.                    …(8分)
(Ⅱ)解:∵A1A⊥平面BCD,所以A1A是锥体的高,
==.…(14分)
点评:本题主要考查线面垂直的性质以及应用,锥体的体积公式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示,在长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,M为棱DD1上的一点.
(1)求三棱锥A-MCC1的体积;
(2)当M为中点时,求证:B1M⊥平面MAC.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在长方体ABCDABCD′中,截下一个棱锥CADD′,求棱锥CADD′的体积与剩余部分的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在长方体中,AB=12,BC=6,AA′=5,分别过BCAD′的两个平行平面将长方体分为体积相等的三个部分,那么FD′等于(  )

A.8        B.6    

C.4        D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在长方体中,AB=12,BC=6,AA′=5,分别过BC和A′D′的两个平行平面将长方体分为体积相等的三个部分,那么F′D′等于(  )

A.8          B.6    

C.4          D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在长方体中,AB=12,BC=6,AA′=5,分别过BC和A′D′的两个平行平面将长方体分为体积相等的三个部分,那么F′D′等于(  )

A.8          B.6    

C.4          D.3

查看答案和解析>>

同步练习册答案