精英家教网 > 高中数学 > 题目详情

【题目】在如图所示的几何体中,四边形是菱形, 是矩形,平面平面 的中点.

(1)求证: 平面

(2)在线段上是否存在点,使二面角的大小为?若存在,求出的长,若不存在,请说明理由.

【答案】(1)证明见解析;(2)当时,二面角的大小为.

【解析】试题分析:(1)根据题意可连接,设交于,连接,可证,利用线面平行的判定定理即可得证;(2)先假设线段上是否存在点,满足题意,根据题目中的垂直关系,利用三垂线定理作出二面角的平面角,通过解直角三角形即可求得的值.

试题解析:(1)如图:

连接,设交于,连接.由已知, ,故四边形是平行四边形, 的中点,又因为的中点,所以.

因为平面平面所以平面.

2)假设在线段上存在点,使二面角的大小为.

延长交于点,过,连接.因为是矩形,平面平面所以平面,又平面,所以平面所以为二面角的平面角. 由题意.

中, ,则,

所以.

又在中, ,所以.

所以在线段上存在点,使二面角的大小为,此时的长为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了解学生身高情况,某校以的比例对全校1000名学生按性别进行分层抽样调查,已知男女比例为,测得男生身高情况的频率分布直方图(如图所示):

(1)计算所抽取的男生人数,并估计男生身高的中位数(保留两位小数);

(2)从样本中身高在之间的男生中任选2人,求至少有1人身高在之间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

(Ⅰ)若在其定义域内为单调递增函数,求实数的取值范围;

(Ⅱ)设,且,若在[1e]上至少存在一点,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在坐标原点,焦点在轴上的椭圆,离心率为且过点,过定点的动直线与该椭圆相交于两点.

(1)若线段中点的横坐标是,求直线的方程;

(2)在轴上是否存在点,使为常数?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有两枚均匀的硬币和一枚不均匀的硬币,其中不均匀的硬币抛掷后出现正面的概率为,小华先抛掷这三枚硬币,然后小红再抛掷这三枚硬币.

(1)求小华抛得一个正面两个反面且小红抛得两个正面一个反面的概率;

(2)若用表示小华抛得正面的个数,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,得曲线的极坐标方程为 .

(1)化曲线的参数方程为普通方程,化曲线的极坐标方程为直角坐标方程;

(2)直线为参数)过曲线轴负半轴的交点,求与直线平行且与曲线相切的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 为自然对数的底数).

(1)若函数的图象在处的切线方程为,求 的值;

(2)若时,函数内是增函数,求的取值范围;

(3)当时,设函数的图象与函数的图象交于点,过线段的中点轴的垂线分别交于点,问是否存在点,使处的切线与处的切线平行?若存在,求出的横坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设全集为R,集合A={x2,2x1,4},B={x5,1x,9}.

(1若x=3,求

(2,求AB.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地有10个著名景点,其中8 个为日游景点,2个为夜游景点.某旅行团要从这10个景点中选5个作为二日游的旅游地.行程安排为第一天上午、下午、晚上各一个景点,第二天上午、下午各一个景点.

(1)甲、乙两个日游景点至少选1个的不同排法有多少种?

(2)甲、乙两日游景点在同一天游玩的不同排法有多少种?

(3)甲、乙两日游景点不同时被选,共有多少种不同排法?

查看答案和解析>>

同步练习册答案