精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=(ax2+bx+c)e-x的图象过点(0,2a)且在该点处切线的倾斜角为$\frac{π}{4}$.
(1)试用a表示b,c;
(2)若f(x)在[$\frac{1}{2}$,+∞)上不单调,求a的取值范围.

分析 (1)求出函数的导数,求得切线的斜率,由直线的斜率公式可得方程,解方程可得b,c;
(2)求出导数,由题意可得g(x)=-ax2-x+1在[$\frac{1}{2}$,+∞)上有正有负,讨论a=0,a>0,a<0,结合二次函数的图象,考虑判别式大于0,f($\frac{1}{2}$)>0,以及对称轴与$\frac{1}{2}$的关系,解不等式即可得到所求范围.

解答 解:(1)f(x)=(ax2+bx+c)e-x的导数为
f′(x)=e-x[-ax2+(2a-b)x+b-c],
由在点(0,2a)处切线的倾斜角为$\frac{π}{4}$,可得
k=b-c=1,
再由f(0)=2a,可得c=2a,
则b=1+2a,c=2a;
(2)f(x)=(ax2+bx+c)e-x的导数为
f′(x)=e-x(-ax2-x+1),
由f(x)在[$\frac{1}{2}$,+∞)上不单调,
可得g(x)=-ax2-x+1在[$\frac{1}{2}$,+∞)上有正有负,
a=0时,g(x)=1-x成立;
a<0时,判别式△=1+4a>0,且f($\frac{1}{2}$)=-$\frac{1}{4}$a+$\frac{1}{2}$>0,
又-$\frac{1}{2a}$>$\frac{1}{2}$.解得-$\frac{1}{4}$<a<0;
a>0时,判别式△=1+4a>0,且f($\frac{1}{2}$)=-$\frac{1}{4}$a+$\frac{1}{2}$>0,
解得0<a<2.
综上可得a的取值范围是:-$\frac{1}{4}$<a<2.

点评 本题考查导数的运用:求切线的斜率和单调性,考查分类讨论的思想方法,以及运算求解能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.四面体ABCD中,∠CBD=90°,AB⊥面BCD,点E、F分别为BC、CD的中点,过点E、F和四面体ABCD的外接球球心O的平面将四面体ABCD分成两部分,则较小部分的体积与四面体ABCD的体积之比为(  )
A.$\frac{1}{8}$B.$\frac{3}{16}$C.$\frac{1}{4}$D.$\frac{27}{64}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)=ex+2x-4的零点所在的区间是(  )
A.(0,$\frac{1}{2}$)B.($\frac{1}{2}$,1)C.(1,2)D.(1,$\frac{3}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.(1)求与双曲线$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{4}$=1有相同焦点,且经过点(3$\sqrt{2}$,2)的双曲线的标准方程.
(2)已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两条渐近线均和圆C:x2+y2-6x+5=0相切,且双曲线的右焦点为圆C的圆心,求该双曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\frac{1}{2}{x^2}$+kx+1,g(x)=(x+1)ln(x+1)
(1)若函数g(x)的图象在原点处的切线l与函数f(x)的图象相切,求实数k的值;
(2)若对于$?t∈[{0,\sqrt{e}-1}]$,总存在x1,x2∈(-1,4),且x1≠x2满足f(xi)=g(t)(i=1,2),其中e为自然对数的底数,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设命题p:实数x满足(x-a)(x-3a)<0,其中a>0;命题q:实数x满足x2-5x+6≤0,若¬p是q的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.(1)已知$\sqrt{a}+\frac{1}{{\sqrt{a}}}$=3,求a2+a-2的值;
(2)求值:lg25+lg2•lg50+(lg2)2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1的左右焦点分别为F1,F2,若椭圆上存在点P使得|PF1|=2|PF2|,则椭圆的离心率范围是
(  )
A.[$\frac{1}{3}$,1)B.($\frac{1}{3}$,1)C.[$\frac{2}{3}$,1)D.($\frac{2}{3}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若角α终边所在的直线经过点$P(cos\frac{3π}{4},sin\frac{3π}{4})$,O为坐标原点,则|OP|=1,$cos({\frac{π}{2}+α})$=$-\frac{{\sqrt{2}}}{2}$.

查看答案和解析>>

同步练习册答案