精英家教网 > 高中数学 > 题目详情
已知△ABC中,∠ACB=90°,CD⊥AB,且AD=1,BD=2,△ACD绕CD旋转至A′CD,使A′B=
3

(1)求证:BA′⊥面A′CD;
(2)求异面直线A′C与BD所成角的余弦值.
(3)(理科做)求二面角A′-CD-B的大小.
分析:(1)要证BA⊥面ACD. 只需证明AD⊥AB,CD⊥AB,由题意可证,故可得结论;
(2)利用平行线,可得∠CA′E为所求角,利用余弦定理可求;
(3)利用AD⊥CD,且BD⊥CD,可知∠A′DB是所求二面角的平面角,从而可求.
解答:证明:
(1)由题可知:CD⊥BD,CD⊥AD,
且BD∩AD=D,
∴CD⊥面ABD,CD⊥AB,
又∵AD2+AB2=BD2,∴AD⊥AB,且CD∩AD=D,
∴BA⊥面ACD.
(2)过点AAE∥BD,且AE=BD,连接DE,则∠CA′E为所求角,CE=
5
AE=2,
∴COS∠CAE=
4+3-5
2×2×
3
=
3
6

(3)∵AD⊥CD,且BD⊥CD,
∴∠A′DB是所求二面角的平面角,
由题易知∠ADB=60°
∴二面角A-CD-B的大小为60°
点评:本题以三棱锥为载体,考查线面垂直,考查线线角,线面角,关键是作出相应的角.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知△ABC中,A=60°,a=
15
,c=4,那么sinC=
2
5
5
2
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,A(4,2),B(1,8),C(-1,8).
(1)求AB边上的高所在的直线方程;
(2)直线l∥AB,与AC,BC依次交于E,F,S△CEF:S△ABC=1:4.求l所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,a=2,b=1,C=60°,则边长c=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,a=2
3
,若
m
=(-cos
A
2
,sin
A
2
)
n
=(cos
A
2
,sin
A
2
)
满足
m
n
=
1
2
.(1)若△ABC的面积S=
3
,求b+c的值.(2)求b+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,A,B,C的对边分别为a,b,c,且
(AB)2
=
AB
AC
+
BA
BC
+
CA
CB

(Ⅰ)判断△ABC的形状,并求t=sinA+sinB的取值范围;
(Ⅱ)若不等式a2(b+c)+b2(c+a)+c2(a+b)≥kabc,对任意的满足题意的a,b,c都成立,求k的取值范围.

查看答案和解析>>

同步练习册答案