精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=lnx﹣ex+m在x=1处有极值,求m的值及f(x)的单调区间.

【答案】解:f(x)的定义域为(0,+∞), , 由函数f(x)=lnx﹣ex+m在x=1处有极值,可得f'(1)=1﹣e1+m=0,
解得:m=﹣1,从而
显然f'(x)在(0,+∞)上是减函数,且f'(1)=0,
所以当x∈(0,1)时,f'(x)>0,f(x)单调递增;当x∈(1,+∞)时,f'(x)<0,f(x)单调递减.
故f(x)的单调增区间是(0,1),f(x)的单调减区间是(1,+∞)
【解析】求导f′(x),从而令f′(1)=0,从而求m再检验即可;讨论以确定导数的正负,从而求函数的单调区间
【考点精析】解答此题的关键在于理解利用导数研究函数的单调性的相关知识,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知△ABC三边所在直线方程:lAB:3x﹣2y+6=0,lAC:2x+3y﹣22=0,lBC:3x+4y﹣m=0(m∈R,m≠30).
(1)判断△ABC的形状;
(2)当BC边上的高为1时,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:对于m∈[﹣1,1],不等式a2﹣5a﹣3≥ 恒成立;命题q:不等式x2+ax+2<0有解,若p∨q为真,且p∧q为假,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=sin(ωx+φ)(ω>0,|φ|< )的部分图象如图所示,将y=f(x)的图象向右平移 个单位长度后得到函数y=g(x)的图象.
(1)求函数y=g(x)的解析式;
(2)在△ABC中,角A,B,C满足2sin2 =g(C+ )+1,且其外接圆的半径R=2,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间x单位:小时)与当天投篮命中率y之间的关系:

时间x

1

2

3

4

5

命中率y

0.4

0.5

0.6

0.6

0.4


(1)用线性回归分析的方法求回归方程 = x+
(2)预测小李该月6号打6小时篮球的投篮命中率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xlnx,g(x)=﹣x2+ax﹣2
(Ⅰ)求函数f(x)在[t,t+2](t>0)上的最小值;
(Ⅱ)若函数y=f(x)与y=g(x)的图象恰有一个公共点,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=4cosωxsin(ωx+ )+a(ω>0)图象上最高点的纵坐标为2,且图象上相邻两个最高点的距离为π.
(Ⅰ)求a和ω的值;
(Ⅱ)求函数f(x)在[0,π]上的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设A、B、C为锐角△ABC的三个内角,M=sinA+sinB+sinC,N=cosA+2cosB,则(
A.M<N
B.M=N
C.M>N
D.M、N大小不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学餐饮中心为了了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:

喜欢甜品

不喜欢甜品

合计

南方学生

60

20

80

北方学生

10

10

20

合计

70

30

100


(1)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;
(2)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率. 附:K2=

P(K2>k0

0.10

0.05


0.01

0.005

k0

2.706

3.841


6.635

7.879

查看答案和解析>>

同步练习册答案