【题目】为提高产品质量,某企业质量管理部门经常不定期地抽查产品进行检测,现在某条生产线上随机抽取100个产品进行相关数据的对比,并对每个产品进行综合评分(满分100分),将每个产品所得的综合评分制成如图所示的频率分布直方图.记综合评分为80分及以上的产品为一等品.
(1)求图中的值,并求综合评分的中位数;
(2)用样本估计总体,以频率作为概率,按分层抽样的思想,先在该条生产线中随机抽取5个产品,再从这5个产品中随机抽取2个产品记录有关数据,求这2个产品中恰有一个一等品的概率.
【答案】(1) ;中位数为82.5. (2)
【解析】
(1)根据频率之和为1,结合频率分布直方图对应矩形区域面积求解即可;先结合数值预判中位数所在组距应在80到90之间,设综合评分的中位数为,结合频率计算公式求解即可;
(2)先结合分层抽样计算出一等品所占比例,再采用列举法表示出所有基本事件,结合古典概率公式求解即可
(1)由频率和为1,得,;
设综合评分的中位数为,则,解得,
所以综合评分的中位数为82.5.
(2)由频率分布直方图知,一等品的频率为,即概率为0.6;
所以100个产品中一等品有60个,非一等品有40个,则一等品与非一等品的抽样比为3:2;
所以现抽取5个产品,一等品有3个,记为、、,非一等品2个,记为、;
从这5个产品中随机抽取2个,基本事件为:、、、、、、、、、共10种;
抽取的这2个产品中恰有一个一等品的事件为:、、、、、共6种,
所以所求的概率为.
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,椭圆的极坐标方程为,其左焦点在直线上.
(1)若直线与椭圆交于两点,求的值;
(2)求椭圆的内接矩形面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列四个命题:
①中,是成立的充要条件;
②当时,有;
③已知 是等差数列的前n项和,若,则;
④若函数为上的奇函数,则函数的图象一定关于点成中心对称.其中所有正确命题的序号为___________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,A、B两点的坐标分别为(0,1)、(0,﹣1),动点P满足直线AP与直线BP的斜率之积为,直线AP、BP与直线y=﹣2分别交于点M、N.
(1)求动点P的轨迹方程;
(2)求线段MN的最小值;
(3)以MN为直径的圆是否经过某定点?若经过定点,求出定点的坐标;若不经过定点,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】银川市房管局为了了解该市市民2018年1月至2019年1月期间购买二手房情况,首先随机抽样其中200名购房者,并对其购房面积m(单位:平方米,)进行了一次调查统计,制成了如图所示的频率分布直方图.
(Ⅰ)试估计该市市民的平均购房面积:
(Ⅱ)现采用分层抽样的方法从购房面积位于的40位市民中随机取4人,再从这4人中随机抽取2人,求这2人的购房面积恰好有一人在的概率,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,其中为自然对数的底数,.
(1)讨论函数的单调性,并写出相应的单调区间;
(2)已知,,若对任意都成立,求的最大值;
(3)设,若存在,使得成立,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解学生的身体状况,某校随机抽取了一批学生测量体重.经统计,这批学生的体重数据(单位:千克)全部介于45至70之间.将数据分成以下5组:第1组,第2组,第3组,第4组,第5组,得到如图所示的频率分布直方图,现采用分层抽样的方法,从第3,4,5组中随机抽取6名学生,则第3,4,5组抽取的学生人数依次为( )
A.4,5,6B.3,2,1C.2,4,5D.2,1,3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某游戏棋盘上标有第站,棋子开始位于第站,选手抛掷均匀骰子进行游戏,若掷出骰子向上的点数不大于,棋子向前跳出一站;否则,棋子向前跳出两站,直到跳到第站或第站时,游戏结束.设游戏过程中棋子出现在第站的概率为.
(1)当游戏开始时,若抛掷均匀骰子次后,求棋子所走站数之和的分布列与数学期望;
(2)证明:;
(3)若最终棋子落在第站,则记选手落败,若最终棋子落在第站,则记选手获胜.请分析这个游戏是否公平.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com