精英家教网 > 高中数学 > 题目详情
6.已知三棱锥A-BCD的每个面都是正三角形,M,N分别是AB,CD的中点,$\overrightarrow{BA}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow{b}$,$\overrightarrow{BD}$=$\overrightarrow{c}$,则$\overrightarrow{MN}$等于(  )
A.$\frac{1}{2}$($\overrightarrow{a}$+$\overrightarrow{b}$+$\overrightarrow{c}$)B.$\frac{1}{2}$($\overrightarrow{a}$+$\overrightarrow{c}$-$\overrightarrow{b}$)C.$\frac{1}{2}$($\overrightarrow{b}$+$\overrightarrow{c}$-$\overrightarrow{a}$)D.$\frac{1}{2}$($\overrightarrow{a}$+$\overrightarrow{b}$-$\overrightarrow{c}$)

分析 可先画出图形,根据向量加法、减法,及数乘的几何意义便可得到$\overrightarrow{MN}=-\frac{1}{2}\overrightarrow{BA}+\overrightarrow{BC}+\frac{1}{2}(\overrightarrow{BD}-\overrightarrow{BC})$,然后进行向量的数乘运算,便可用$\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}$表示出向量$\overrightarrow{MN}$.

解答 解:如图,

$\overrightarrow{MN}=\overrightarrow{MB}+\overrightarrow{BC}+\overrightarrow{CN}$
=$-\frac{1}{2}\overrightarrow{BA}+\overrightarrow{BC}+\frac{1}{2}\overrightarrow{CD}$
=$-\frac{1}{2}\overrightarrow{BA}+\overrightarrow{BC}+\frac{1}{2}(\overrightarrow{BD}-\overrightarrow{BC})$
=$-\frac{1}{2}\overrightarrow{BA}+\frac{1}{2}\overrightarrow{BC}+\frac{1}{2}\overrightarrow{BD}$
=$\frac{1}{2}(\overrightarrow{b}+\overrightarrow{c}-\overrightarrow{a})$.
故选:C.

点评 考查向量加法、减法,以及数乘的几何意义,以及向量的数乘运算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=$\frac{4}{3}$•$\frac{|x-1|}{{x}^{2}+3}$,g(x)=asin($\frac{π}{3}$x+$\frac{3}{2}$π)-2a+2(a>0),给出下列结论:
①函数f(x)的值域为[0,$\frac{2}{3}$];
②函数g(x)在[0,1]上是增函数;
③对任意a>0,方程f(x)=g(x)在区间[0,1]内恒有解;
④若?x1∈R,x2∈[0,1],使得f(x1)=g(x2)成立,则实数a的取值范围是:$\frac{4}{9}$≤a≤$\frac{4}{5}$.
其中所有正确结论的序号为①②④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.一根长为lcm的线,一端固定,另一端悬挂一个小球,小球摆动时,离开平衡位置的位移s(单位:cm)与时间t(单位:s)的函数关系是s=3cos($\sqrt{\frac{g}{l}}t+\frac{π}{3}$),t∈[0,+∞)
(1)求小球摆动的周期;
(2)已知g≈980cm/s2,要使小球摆动的周期是1s,线的长度l应当是多少?(精确到0.1cm)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.某同学利用计算机设计计算程序,使得输入数据和输出数据具有如下对应关系,那么输入数据为8时,输出的数据是$\frac{8}{23}$.
 输入 1
 输出 $\frac{1}{2}$ $\frac{2}{5}$ $\frac{3}{8}$ $\frac{4}{11}$ $\frac{5}{14}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,棱长为1的正方体ABCD-A1B1C1D1中,
(1)求证:面A1C1D∥面ACB1
(2)求证:BD1⊥平面ACB1
(3)求:B1D1与平面ACB1所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如果角α的终边经过点P(sin780°,cos(-330°)),则sinα=(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知曲线y=3x2,求过点A(1,3)的曲线的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.边长为$\sqrt{2}$的正方形ABCD的中心为O,过点O作平面ABCD的垂线,在其上取点V,使OV=1,连接VA,VB,VC,VD.
(1)在直线VC上找一点E,使VC⊥BE;
(2)在(1)的条件下,求BE与平面VDB所成的角的余弦值;
(3)在(1)的条件下,求E到平面VBD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求方程x3-x-1=0在区间(1,1.5)内的一个近似解(精确度0.1).

查看答案和解析>>

同步练习册答案