分析:根据分段函数的解析式,可以确定2+m和2-m应该在两段函数上各一个,对2+m和2-m分类讨论,确定相应的解析式,列出方程,求解即可得到实数m的值.
解答:解:∵
f(x)=,
∴f(x)在x≤2和x>2时,函数均为一次函数,
∵f(2-m)=f(2+m),
∴2-m和2+m分别在x≤2和x>2两段上各一个,
①当2-m≤2,且2+m>2,即m>0时,
∴f(2-m)=3(2-m)-m=6-4m,f(2+m)=-(2+m)-2m=-2-3m,
∵f(2-m)=f(2+m),
∴6-4m=-2-3m,
∴m=8,;
②当2-m>2,且2+m≤2,即m<0时,
∴f(2-m)=-(2-m)-2m=-2-m,f(2+m)=3(2+m)-m=6+2m,
∵f(2-m)=f(2+m),
∴-2-m=6+2m,
∴m=
-.
综合①②,可得实数m的值为
-和8.
故答案为:
-和8.
点评:本题考查了分段函数的解析式及其应用,考查了分段函数的取值问题,对于分段函数一般选用数形结合和分类讨论的数学思想进行解题.同时考查了函数的零点与方程根的关系.函数的零点等价于对应方程的根,等价于函数的图象与x轴交点的横坐标,解题时要注意根据题意合理的选择转化.属于中档题.