精英家教网 > 高中数学 > 题目详情
18.计算:
(1)(2$\frac{1}{4}$)${\;}^{\frac{1}{2}}$-(-9.6)0-(3$\frac{3}{8}$)-${\;}^{\frac{2}{3}}$+(1.5)-2+($\sqrt{2}$×$\root{4}{3}$)4
(2)若x${\;}^{\frac{1}{2}}$+x${\;}^{-\frac{1}{2}}$=3,试求$\frac{{x}^{\frac{3}{2}}+{x}^{-\frac{3}{2}}+2}{{x}^{2}+{x}^{-2}+3}$的值.

分析 (1)由条件利用分数指数幂的运算法则,求得所给式子的值.
(2)由条件利用完全平方公式求得 x+x-1=7,x2+x-2=47,根据立方和公式可得 ${x}^{\frac{3}{2}}$+${x}^{-\frac{3}{2}}$=47,从而求得要求的式子的值.

解答 解:(1)(2$\frac{1}{4}$)${\;}^{\frac{1}{2}}$-(-9.6)0-(3$\frac{3}{8}$)-${\;}^{\frac{2}{3}}$+(1.5)-2+($\sqrt{2}$×$\root{4}{3}$)4
=$\frac{3}{2}$-1-${(\frac{3}{2})}^{-2}$+${(\frac{3}{2})}^{-2}$+4•3=$\frac{25}{2}$.
(2)∵x${\;}^{\frac{1}{2}}$+x${\;}^{-\frac{1}{2}}$=3,∴平方可得 x+$\frac{1}{x}$+2=9,即 x+x-1=7,故 x2+x-2+2=49,x2+x-2=47.
又 根据立方和公式可得 ${x}^{\frac{3}{2}}$+${x}^{-\frac{3}{2}}$=(${x}^{\frac{1}{2}}$+${x}^{-\frac{1}{2}}$)(x+x-1-1)=3×6=18,
故 $\frac{{x}^{\frac{3}{2}}+{x}^{-\frac{3}{2}}+2}{{x}^{2}+{x}^{-2}+3}$=$\frac{18+2}{47+3}$=$\frac{2}{5}$.

点评 本题主要考查分数指数幂的运算法则的应用,完全平方公式、立方和公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知a,b,c为实数,且满足a-b+c>0,a+b+c<0,4a-2b+c<0.
(1)求证:b<0;
(2)求证:a<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an},当n为奇数时an=-3n+2;当n为偶数时an=2n-7.
(1)请写出此数列的前4项;
(2)问:121和-19是否此数列中的项?若是,求出它的下一项.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在△ABC中,若cos(B+C)=$\frac{1}{2}$,则tanA=-$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知R为实数集,函数f(x)=lg(x2-2x-15)的定义域是集合M,集合P={x|(x-a)(x-8)≤0}.
(1)若M∪P=R,求实数a的取值范围;
(2)求实数a的取值范围,使它成为M∩P={x|5<x≤8}的充要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求不等式a8x+25>a25x-26(a>0且a≠1)中的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知正四棱台侧棱长为5,上底面边长和下底面边长分别为2和5,求该四楼台的高和斜高.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在圆x2+y2=4上,与直线4x-4y+21=0的距离最小的点的坐标为(  )
A.($\sqrt{2}$,$\sqrt{2}$)B.(-$\sqrt{2}$,$\sqrt{2}$)C.($\sqrt{2}$,-$\sqrt{2}$)D.(-$\sqrt{2}$,-$\sqrt{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=2|x+1|+ax(x∈R),若函数f(x)存在两个零点,则a的取值范围是(  )
A.(0,1)B.(0,2)C.[0,2)D.[0,2]

查看答案和解析>>

同步练习册答案