【题目】如图,在三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,.
(1)求证:B1C⊥AB;
(2)若∠CBB1=60°,AC=BC,且点A在侧面BB1C1C上的投影为点O,求二面角B﹣AA1﹣C的余弦值.
【答案】(1)详见解析;(2).
【解析】
(1)由侧面BB1C1C为菱形,得B1C⊥BO,再由AC=AB1,O为B1C的中点,得B1C⊥AO,利用直线与平面垂直的判定可得B1C⊥平面ABO,从而得到B1C⊥AB;
(2)点A在侧面BB1C1C上的投影为点O,即AO⊥平面BB1C1C,由(1)知OB⊥OB1,以O为坐标原点,分别以OB,OB1,OA所在直线为x,y,z轴建立空间直角坐标系.分别求出平面BAA1 的一个法向量与平面ACA1的一个法向量,由两法向量所成角的余弦值可得二面角B﹣AA1﹣C的余弦值.
(1)证明:∵侧面BB1C1C为菱形,∴B1C⊥BO,又AC=AB1,O为B1C的中点,∴B1C⊥AO,
而AO∩BO=O,∴B1C⊥平面ABO,得B1C⊥AB;
(2)解:∵点A在侧面BB1C1C上的投影为点O,即AO⊥平面BB1C1C,又由(1)知OB⊥OB1,
∴以O为坐标原点,分别以OB,OB1,OA所在直线为x,y,z轴建立空间直角坐标系.
∵∠CBB1=60°,AC=BC,
设BC=2a,则,,,,
,,.
设平面BAA1 的一个法向量为,
由,取z1=1,得;
设平面ACA1的一个法向量为,
由,取,得.
∴.由图可知,二面角B﹣AA1﹣C为锐角,
∴二面角B﹣AA1﹣C的余弦值为.
科目:高中数学 来源: 题型:
【题目】在全面抗击新冠肺炎疫情这一特殊时期,我市教育局提出“停课不停学”的口号,鼓励学生线上学习.某校数学教师为了调查高三学生数学成绩与线上学习时间之间的相关关系,对高三年级随机选取45名学生进行跟踪问卷,其中每周线上学习数学时间不少于5小时的有19人,余下的人中,在检测考试中数学平均成绩不足120分的占,统计成绩后得到如下列联表:
分数不少于120分 | 分数不足120分 | 合计 | |
线上学习时间不少于5小时 | 4 | 19 | |
线上学习时间不足5小时 | |||
合计 | 45 |
(1)请完成上面列联表;并判断是否有99%的把握认为“高三学生的数学成绩与学生线上学习时间有关”;
(2)在上述样本中从分数不少于120分的学生中,按照分层抽样的方法,抽到线上学习时间不少于5小时和线上学习时间不足5小时的学生共5名,若在这5名学生中随机抽取2人,求至少1人每周线上学习时间不足5小时的概率.
(下面的临界值表供参考)
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式 其中)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在三棱柱ABC﹣A1B1C1中,E是棱AB的中点,动点F是侧面ACC1A1(包括边界)上一点,若EF//平面BCC1B1,则动点F的轨迹是( )
A.线段B.圆弧
C.椭圆的一部分D.抛物线的一部分
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x+1|﹣|2x﹣2|的最大值为M,正实数a,b满足a+b=M.
(1)求2a2+b2的最小值;
(2)求证:aabb≥ab.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在边长为的菱形中,,现沿对角线把翻折到的位置得到四面体,如图所示.已知.
(1)求证:平面平面;
(2)若是线段上的点,且,求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,过右焦点F的直线L与C相交于A、B两点,当L的斜率为1时,坐标原点O到L的距离为.
(1)求椭圆的标准方程;
(2)在C上是否存在点P,使得当L绕F转到某一位置时,有成立?若存在,求出所有的P的坐标与L的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】改革开放40年来,我国城市基础设施发生了巨大的变化,各种交通工具大大方便了人们的出行需求.某城市的A先生实行的是早九晚五的工作时间,上班通常乘坐公交或地铁加步行.已知从家到最近的公交站或地铁站都需步行5分钟,乘坐公交到离单位最近的公交站所需时间Z1(单位:分钟)服从正态分布N(33,42),下车后步行再到单位需要12分钟;乘坐地铁到离单位最近的地铁站所需时间Z2(单位:分钟)服从正态分布N(44,22),从地铁站步行到单位需要5分钟.现有下列说法:①若8:00出门,则乘坐公交一定不会迟到;②若8:02出门,则乘坐公交和地铁上班迟到的可能性相同;③若8:06出门,则乘坐公交比地铁上班迟到的可能性大;④若8:12出门,则乘坐地铁比公交上班迟到的可能性大.则以上说法中正确的序号是_____.
参考数据:若Z~N(μ,σ2),则P(μ﹣σ<Z≤μ+σ)=0.6826,P(μ﹣2σ<Z≤μ+2σ)=0.9544,P(μ﹣3σ<Z≤μ+3σ)=0.9974
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com