【题目】如图:已知某公园的四处景观分别位于等腰梯形的四个顶点处,其中,两地的距离为千米,,两地的距离为千米,.现拟规划在(不包括端点)路段上增加一个景观,并建造观光路直接通往处,造价为每千米万元,又重新装饰路段,造价为每千米万元.
(1)若拟修建观光路路段长为千米,求路段的造价;
(2)设,当为何值时,,段的总造价最低.
科目:高中数学 来源: 题型:
【题目】已知是各项均为正数的等比数列,是等差数列,且.
(I)求和的通项公式;
(II)设数列满足,求;
(III)对任意正整数,不等式成立,求正数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,函数f(x)=2cosxsin(x﹣A)+sinA(x∈R)在x=处取得最大值.
(1)当时,求函数f(x)的值域;
(2)若且sinB+sinC=,求△ABC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线经过椭圆()的左顶点和
上顶点.椭圆的右顶点为,点是椭圆上位于轴上方的动点,直线、与直线
分别交于、两点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)求线段长度的最小值;
(Ⅲ)当线段的长度最小时,椭圆上是否存在这样的点,使得的面积为?若存在,确定点的个数;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的最小正周期为,将的图像向右平移个单位长度后得到函数,的图像关于轴对称,且.
(1)求函数的解析式;
(2)设函数,若函数的图像在上恰有2个最高点,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设、、是三条不同的直线,、、是三个不同的平面,给出下列四个命题:
①若,,,,,则;
②若,,则;
③若,是两条异面直线,,,,且,则;
④若,,,,,则.
其中正确命题的序号是( )
A.①③B.①④C.②③D.②④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com