精英家教网 > 高中数学 > 题目详情
(2013•东莞一模)设等差数列{an},{bn}前n项和Sn,Tn满足
Sn
Tn
=
An+1
2n+7
,且
a3
b4+b6
+
a7
b2+b8
=
2
5
,S2=6;函数g(x)=
1
2
(x-1)
,且cn=g(cn-1)(n∈N,n>1),c1=1.
(1)求A;
(2)求数列{an}及{cn}的通项公式;
(3)若dn=
an(n为奇数)
cn(n为偶数)
,试求d1+d2+…+dn
分析:(1)利用等差中项的概念,把
a3
b4+b6
+
a7
b2+b8
=
2
5
转化为
a5
b5
=
2
5
,结合
Sn
Tn
=
An+1
2n+7
得到
9A+1
2×9+7
=
2
5
,从而A的值可求;
(2)由A=1,可令Sn=kn(n+1),由S2=6求出k,则Sn可求,分n=1和n≥2求得an.把给出的cn=g(cn-1)变形,得到数列{cn+1}是
1
2
为公比,以c1+1=2为首项的等比数列,由等比数列的通项公式求出cn+1,从而得到cn
(3)分n=2k和n=2k+1两类写出d1+d2+…+dn,然后利用分组求和.
解答:解:(1)∵{an},{bn}是等差数列,
a3
b4+b6
+
a7
b2+b8
=
2
5
,得
a3
2b5
+
a7
2b5
=
2a5
2b5
=
a5
b5
=
2
5

S9
T9
=
a 1+a9
2
×9
b1+b9
2
×9
=
a5
b5
=
2
5

9A+1
2×9+7
=
2
5
,解得A=1;
(2)令Sn=kn(n+1),∵S2=6,得6k=6,k=1,即Sn=n2+n
当n=1时,a1=S1=2,当n≥2时,an=Sn-Sn-1=n2+n-[(n-1)2+(n-1)]=2n,
该式对n=1时成立,所以an=2n;
由题意cn=
1
2
(cn-1-1)
,变形得cn+1=
1
2
(cn-1+1)
(n≥2),
∴数列{cn+1}是
1
2
为公比,以c1+1=2为首项的等比数列.
cn+1=2•(
1
2
)n-1
,即cn=(
1
2
)n-2-1

(3)当n=2k+1时,d1+d2+…+dn=(a1+a3+…a2k+1)+(c2+c4+…+c2k
=[2+6+10+…+2(2k+1)]+[(1-1)+(
1
22
-1
)+…+(
1
22k-2
-1
)]
=2(k+1)2+
4
3
[1-(
1
4
)k]-k=2k2+3k+2+
4
3
[1-(
1
4
)k]

=
n2+n+2
2
+
4
3
[1-(
1
2
)n-1]

当n=2k时,d1+d2+…+dn=(a1+a3+…a2k-1)+(c2+c4+…+c2k
=[2+6+10+…+2(2k-1)]+[(1-1)+(
1
22
-1
)+…+(
1
22k-2
-1
)]
=2k2-k+
4
3
[1-(
1
4
)k]=
n2-n
2
+
4
3
[1-(
1
2
)n]

综上:d1+d2+…dn=
n2+n+2
2
+
4
3
[1-(
1
2
)n-1](n为正奇数)
n2-n
2
+
4
3
[1-(
1
2
)n](n为正偶数)
点评:本题考查了等差关系的确定,考查了等差数列的通项公式和等差中项概念,训练了分类讨论的数学思想方法,考查了数列的分组求和及等差数列和等比数列的前n项和公式,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•东莞一模)在同一平面直角坐标系中,已知函数y=f(x)的图象与y=ex的图象关于直线y=x对称,则函数y=f(x)对应的曲线在点(e,f(e))处的切线方程为
x-ey=0
x-ey=0

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东莞一模)已知函数f(x)=lnx-
ax
,g(x)=f(x)+ax-6lnx,其中a∈R.
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)若g(x)在其定义域内为增函数,求正实数a的取值范围;
(Ⅲ)设函数h(x)=x2-mx+4,当a=2时,若?x1∈(0,1),?x2∈[1,2],总有g(x1)≥h(x2)成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东莞一模)已知函数f(x)=
(
1
3
)
x
,x≥3
f(x+1),x<3
,则f(2+log32)的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东莞一模)在等差数列{an}中,若a1+a5+a9=
π
4
,则tan(a4+a6)=
3
3
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东莞一模)已知数列{an}的前n项和为Sn,数列{Sn+1}是公比为2的等比数列,a2是a1和a3的等比中项.
(1)求数列{an}的通项公式;
(2)求数列{nan}的前n项和Tn

查看答案和解析>>

同步练习册答案