精英家教网 > 高中数学 > 题目详情

【题目】若存在集合A、B满足则称的一个二分划.①,判断是否为的一个二分划,说明理由.

是否能找到的一个二分划满足集合A中不存在三个成等比数列的数;集合B中不存在无穷的等比数列?说明理由.

【答案】见解析

【解析】

①因为所以不是的一个二分划.

能找到.

正整数集中形成的等比数列可以唯一地用一个正整数数对来表示,其中,a为数列的首项,q为数列的公比.反之,每一对也唯一地表示一个无穷等比数列.

正整数数对可排序如下将这些数对所对应的无穷等比数列依次记为先在中任取一个数中取数,使得中任取使得中取数使得一般地,在中取数使得.如此得到正整数由这些数组成集合A,并令可以证明上述构造的A和B满足题设.

首先中每一个无穷等比数列中至少有一项集合A中,于是,集合B中不存在无穷等不数列.其次证明集合A中不存在三数成等比数列.任取不妨设但由集合A的取法知从而不成等比数列.因此,集合A中不存在三个成等比数列的数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面底面.分别是的中点,求证:

(Ⅰ)底面

(Ⅱ)平面

(Ⅲ)平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若实数满足,则称的不动点.已知函数

,其中,为常数。

(1)若,求函数的单调递增区间;

(2)若时,存在一个实数,使得既是的不动点,又是的极值点,求实数的值;

(3)证明:不存在实数组,使得互异的两个极值点均为不动点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某书店刚刚上市了《中国古代数学史》,销售前该书店拟定了5种单价进行试销,每本单价(元)试销l天,得到如表单价(元)与销量(册)数据:

单价(元)

销量(册)

1)已知销量与单价具有线性相关关系,求关于的线性回归方程;

2)若该书每本的成本为元,要使得售卖时利润最大,请利用所求的线性相关关系确定单价应该定为多少元?(结果保留到整数)

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)的定义域为R.若存在与x无关的正常数M,使|f(x)|≤ M|x|对一切实数x均成立,则称f(x)为有界泛函.则函数:① f(x)=-3x,② f(x)=x2,③ f(x)=sin2x,④ f(x)=2x,⑤ f(x)=xcosx中,属于有界泛函的有____________.(填上所有正确的番号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的展开式中第5项与第7项的二项数系数相等,且展开式的各项系数之和为1024,则下列说法正确的是(

A.展开式中奇数项的二项式系数和为256

B.展开式中第6项的系数最大

C.展开式中存在常数项

D.展开式中含项的系数为45

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校在2012年的自主招生考试成绩中随机抽取名中学生的笔试成绩,按成绩分组,得到的频率分布表如表所示.

组号

分组

频数

频率

第1组

5

第2组

第3组

30

第4组

20

第5组

10

(1)请先求出频率分布表中位置的相应数据,再完成频率分布直方图;

(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第组中用分层抽样抽取名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试;

(3)在(2)的前提下,学校决定在名学生中随机抽取名学生接受考官进行面试,求:第组至少有一名学生被考官面试的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是平行四边形,,侧面底面,,分别为的中点,点在线段上.

)求证:平面

)若的中点,求证:平面

)当时,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣(a+2)x+alnx(a∈R).

(1)若x=是函数f(x)的一个极值点,求实数a的值;

(2)当a>0时,讨论函数f(x)的单调性;

(3)当a>2且x>1时,求证:函数f(x)的最小值小于﹣3.

查看答案和解析>>

同步练习册答案