精英家教网 > 高中数学 > 题目详情

【题目】已知数列的前n项和为,且n成等差数列,.

1)证明数列是等比数列,并求数列的通项公式;

2)若数列中去掉数列的项后余下的项按原顺序组成数列,求的值.

【答案】1)证明见解析,;(211202.

【解析】

1)由n成等差数列,可得,两式相减,由等比数列的定义可得是等比数列,可求数列的通项公式;

2)由(1)中的可求出,根据求出数列中的公共项,分组求和,结合等比数列和等差数列的求和公式,可得答案.

1)证明:因为n成等差数列,所以,①

所以.

①-②,得,所以.

又当时,,所以,所以

故数列是首项为2,公比为2的等比数列,

所以,即.

2)根据(1)求解知,,所以

所以数列是以1为首项,2为公差的等差数列.

又因为

所以

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线的图象经过点.

(1)求抛物线的方程和焦点坐标;

(2)直线交抛物线不同两点,且位于轴两侧,过点分别作抛物线的两条切线交于点,直线轴的交点分别记作.记的面积为面积为面积为,试问是否为定值,若是,请求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆M过点且与直线相切.

(1)求动圆圆心M的轨迹C的方程;

(2)斜率为的直线l经过点且与曲线C交于AB两点,线段AB的中垂线交x轴于点N,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左,右焦点分别为M是椭圆E上的一个动点,且的面积的最大值为.

1)求椭圆E的标准方程,

2)若,四边形ABCD内接于椭圆E,记直线ADBC的斜率分别为,求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图,90后从事互联网行业岗位分布条形图,则下列结论中不正确的是(

注:90后指1990年及以后出生,80后指1980-1989年之间出生,80前指1979年及以前出生.

A.互联网行业从业人员中90后占一半以上

B.互联网行业中从事技术岗位的人数超过总人数的

C.互联网行业中从事运营岗位的人数90后比80前多

D.互联网行业中从事技术岗位的人数90后比80后多

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面.

1)求证:

2)若,求平面和平面所成的角(锐角)的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥PABC中,ACBCAB2BCD为线段AB上一点,且AD3DBPD⊥平面ABCPA与平面ABC所成的角为45°

1)求证:平面PAB⊥平面PCD

2)求二面角PACD的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的最小正周期为4,其图象关于直线对称,给出下面四个结论:

①函数在区间上先增后减;②将函数的图象向右平移个单位后得到的图象关于原点对称;③点是函数图象的一个对称中心;④函数上的最大值为1.其中正确的是( )

A. ①② B. ③④ C. ①③ D. ②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若函数有两个零点,证明:

(2)设函数的两个零点为.证明:

查看答案和解析>>

同步练习册答案