【题目】已知极点为直角坐标系的原点,极轴为x轴正半轴且单位长度相同的极坐标系中曲线C1:ρ=1, (t为参数).
(Ⅰ)求曲线C1上的点到曲线C2距离的最小值;
(Ⅱ)若把C1上各点的横坐标都扩大为原来的2倍,纵坐标扩大为原来的 倍,得到曲线 .设P(﹣1,1),曲线C2与 交于A,B两点,求|PA|+|PB|.
【答案】解:(Ⅰ)∵曲线C1:ρ=1,∴曲线C1的直角坐标方程为:x2+y2=1, ∴圆心为(0,0),半径为r=1,
(t为参数)消去参数t的C2:y=x+2,
∴圆心到直线距离d= ,(3分)
∴曲线C1上的点到曲线C2距离的最小值为 .
(Ⅱ)∵把C1上各点的横坐标都扩大为原来的2倍,纵坐标扩大为原来的 倍,得到曲线 .
∴伸缩变换为 ,∴曲线 : =1,
(t为参数)代入曲线 ,整理得 .
∵t1t2<0,(8分)
∴|PA|+|PB|=|t1|+|t2|=|t1﹣t2|=
【解析】(Ⅰ)求出曲线C1的直角坐标方程为:x2+y2=1,C2:y=x+2,再求出圆心到直线距离,由此能求出曲线C1上的点到曲线C2距离的最小值.(Ⅱ)伸缩变换为 ,从而曲线 : =1, (t为参数)代入曲线 ,得 .由此能求出|PA|+|PB|.
科目:高中数学 来源: 题型:
【题目】如图,已知等边中,分别为边的中点,为的中点,为边上一点,且,将沿折到的位置,使平面平面EFCB.
(Ⅰ)求证:平面平面;
(Ⅱ)求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.
(Ⅰ)求证:D1E⊥A1D;
(Ⅱ)在棱AB上是否存在点E使得AD1与平面D1EC成的角为?若存在,求出AE的长,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆 的右焦点为F,过椭圆C中心的弦PQ长为2,且∠PFQ=90°,△PQF的面积为1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设A1、A2分别为椭圆C的左、右顶点,S为直线 上一动点,直线A1S交椭圆C于点M,直线A2S交椭圆于点N,设S1、S2分别为△A1SA2、△MSN的面积,求 的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)设为定义在R上的偶函数,当时,.
(1)求函数在R上的解析式;
(2)在直角坐标系中画出函数的图象;
(3)若方程-k=0有四个解,求实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知△ABC的三边所在直线的方程分别是lAB:4x-3y+10=0,lBC:y=2,lCA:3x-4y=5.
(1)求∠BAC的平分线所在直线的方程;
(2)求AB边上的高所在直线的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com