精英家教网 > 高中数学 > 题目详情
函数f(x)=2x+2x-3的零点所在的大致区间是(  )
A、(0,
1
2
B、(
1
2
,1)
C、(1,2)
D、(2,3)
考点:函数零点的判定定理,二分法求方程的近似解
专题:计算题,函数的性质及应用
分析:易知函数f(x)=2x+2x-3在定义域R上单调递增且连续,从而由函数的零点的判定定理判断区间即可.
解答: 解:函数f(x)=2x+2x-3在定义域R上单调递增且连续,
f(
1
2
)=
2
+1-3<0,
f(1)=2+2-3=1>0;
故f(
1
2
)•f(1)<0;
故函数f(x)=2x+2x-3的零点所在的大致区间是(
1
2
,1).
故选B.
点评:本题考查了函数的零点的判定定理的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设A={x|x2-4x-5=0},B={x|x2=1},求A∪B,A∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
ax
1+x2
+1(a≠0).
(1)当a=1时,求函数f(x)图象在点(0,1)处的切线方程;
(2)求函数f(x)的单调区间;
(3)若a>0,g(x)=x2emx,且对任意的x1,x2∈[0,2],f(x1)≥g(x2)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a=3,c=3
3
,A=30°,求C及b.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方形ABCD中,E,F分别是AB,BC的中点,现在沿DE,DF及EF把△ADE,△CDF和△BEF折起,使A,B,C三点重合,重合后的点记作P,那么在四面体P-DEF中必有(  )
A、DP⊥平面PEF
B、DM⊥平面PEF
C、PM⊥平面DEF
D、PF⊥平面DEF

查看答案和解析>>

科目:高中数学 来源: 题型:

若双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的左.右焦点分别为F1.F2,线段F1F2被抛物线y2=2bx的焦点分成5:3两段,则此双曲线的离心率为(  )
A、
2
B、
3
C、
3
2
4
D、
2
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,∠A=60°,a=5,c=8,求∠C.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知2|
AB
|=|
BC
|=4,|
AC
|=3,设O为△ABC的内心,且
AO
AB
BC
,则λ+μ=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=ax-5+1(a>0,且a≠1)过定点(n,m),则二项式(y+m)n的展开式中y2的系数为
 

查看答案和解析>>

同步练习册答案