精英家教网 > 高中数学 > 题目详情
6.已知P(3,-1),N(-$\sqrt{3}$,$\sqrt{3}$),M(6,2),直线l过P点,且与线段MN相交,则直线l的斜率的取值范围是(  )
A.[-1,$\frac{\sqrt{3}}{3}$]B.[-1,-$\frac{\sqrt{3}}{3}$]C.(-∞,-$\frac{\sqrt{3}}{3}$]∪[1,+∞)D.[-$\frac{\sqrt{3}}{3}$,1]

分析 先由P(3,-1),N(-$\sqrt{3}$,$\sqrt{3}$),M(6,2),求得直线NP和MP的斜率,再根据直线l的倾斜角为锐角或钝角加以讨论,将直线l绕P点旋转并观察倾斜角的变化,由直线的斜率公式加以计算,分别得到直线l斜率的范围,最后综合可得答案.

解答 解:∵P(3,-1),N(-$\sqrt{3}$,$\sqrt{3}$),
∴直线NP的斜率k1=$\frac{\sqrt{3}+1}{-\sqrt{3}-3}$=-$\frac{\sqrt{3}}{3}$.
同理可得直线MP的斜率k2=$\frac{2+1}{6-3}$=1.
设直线l与线段AB交于Q点,
当直线的倾斜角为锐角时,随着Q从M向N移动的过程中,l的倾斜角变大,
l的斜率也变大,直到PQ平行y轴时l的斜率不存在,此时l的斜率k≥1;
当直线的倾斜角为钝角时,随着l的倾斜角变大,l的斜率从负无穷增大到
直线NP的斜率,此时l的斜率k≤-$\frac{\sqrt{3}}{3}$.
综上所述,可得直线l的斜率取值范围为:(-∞,-$\frac{\sqrt{3}}{3}$]∪[1,+∞).
故选:C.

点评 本题给出经过定点P的直线l与线段MN有公共点,求l的斜率取值范围.着重考查了直线的斜率与倾斜角及其应用的知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知f(x)=$\left\{\begin{array}{l}{0,x<0}\\{π,x=0}\\{x+1,x>0}\end{array}\right.$,则f(-3)=0,f(0)=π,f(3)=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}满足a1=2,an+1=a2n-an+λ.
(I)是否存在实数λ,使得数列{an}是等比数列,若存在,求出λ的值;不存在,说明理由;
(Ⅱ)当λ=1时,证明:$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{3}}$+…+$\frac{1}{{a}_{n}}$<1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数y=x+2,x∈R的反函数为(  )
A.x=2-yB.x=y-2C.y=2-x,x∈RD.y=x-2,x∈R

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知圆C:(x-3)2+(y-2)2=2,直线l:(m+1)x+(m-1)y-4m=0.
(1)证明:直线l与圆C相交;
(2)若直线l与圆C相交于M、N,求MN的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设f(x)=$\frac{2co{s}^{3}x-si{n}^{2}(360°-x)+2sin(90°+x)+1}{2+2co{s}^{2}(180°+x)+cos(-x)}$,求f($\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.直线x=2的倾斜角为90°,斜率为不存在.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知直线l的倾斜角α满足tanα=$\sqrt{3}$,则直线l的倾斜角是(  )
A.30°B.60°C.30°或150°D.60°或120°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若直线2ax-by+2=0(其中a,b为正实数)经过圆C:x2+y2+2x-4y+1=0的圆心,则$\frac{4}{a}+\frac{1}{b}$的最小值为(  )
A.3B.6C.9D.12

查看答案和解析>>

同步练习册答案