(07年湖南卷理)(12分)
已知双曲线的左、右焦点分别为,,过点的动直线与双曲线相交于两点.
(I)若动点满足(其中为坐标原点),求点的轨迹方程;
(II)在轴上是否存在定点,使?为常数?若存在,求出点的坐标;
若不存在,请说明理由.
解析:由条件知,,设,.
解法一:(I)设,则则,,
,由得
即
于是的中点坐标为.
当不与轴垂直时,,即.
又因为两点在双曲线上,所以,,两式相减得
,即.
将代入上式,化简得.
当与轴垂直时,,求得,也满足上述方程.
所以点的轨迹方程是.
(II)假设在轴上存在定点,使为常数.
当不与轴垂直时,设直线的方程是.
代入有.
则是上述方程的两个实根,所以,,
于是
.
因为是与无关的常数,所以,即,此时=.
当与轴垂直时,点的坐标可分别设为,,
此时.
故在轴上存在定点,使为常数.
解法二:(I)同解法一的(I)有
当不与轴垂直时,设直线的方程是.
代入有.
则是上述方程的两个实根,所以.
.
由①②③得.…………………………………………………④
.……………………………………………………………………⑤
当时,,由④⑤得,,将其代入⑤有
.整理得.
当时,点的坐标为,满足上述方程.
当与轴垂直时,,求得,也满足上述方程.
故点的轨迹方程是.
(II)假设在轴上存在定点点,使为常数,
当不与轴垂直时,由(I)有,.
以上同解法一的(II).
科目:高中数学 来源: 题型:
(07年湖南卷理)(12分)
某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力.每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60%,参加过计算机培训的有75%.假设每个人对培训项目的选择是相互独立的,且各人的选择
相互之间没有影响.
(I)任选1名下岗人员,求该人参加过培训的概率;
(II)任选3名下岗人员,记为3人中参加过培训的人数,求的分布列和期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
(07年湖南卷理)(13分)
已知()是曲线上的点,,是数列的前项和,且满足,,….
(I)证明:数列()是常数数列;
(II)确定的取值集合,使时,数列是单调递增数列;
(III)证明:当时,弦()的斜率随单调递增.
查看答案和解析>>
科目:高中数学 来源: 题型:
(07年湖南卷理)(13分)
已知()是曲线上的点,,是数列的前项和,且满足,,….
(I)证明:数列()是常数数列;
(II)确定的取值集合,使时,数列是单调递增数列;
(III)证明:当时,弦()的斜率随单调递增.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com