精英家教网 > 高中数学 > 题目详情

【题目】下列有关命题的说法正确的是( )

A. 命题“若,则”的否命题为:“若

B. 为真命题,为假命题,则均为假命题

C. 命题“若成等比数列,则”的逆命题为真命题

D. 命题“若,则”的逆否命题为真命题

【答案】D

【解析】

分别写出命题的否命题,可判定A不正确;根据复合命题的真假判定,可判定B不正确;根据等比数列的定义,即可判定C不正确;根据四种命题的关系,可判定D正确,得到答案.

对于A中,命题“若,则”的否命题为:“若”,所以不正确;

对于B中,由为真命题,为假命题,则为真命题,均为假命题,所以不正确;

对于C中,命题“若成等比数列,则”的逆命题为“若,则成等比数列”为假命题,所以不正确;

对于D中,命题“若,则”为真命题,所以命题的逆否命题也是真命题,故选D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校高一举行了一次数学竞赛,为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为)作为样本(样本容量为)进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图,已知得分在[50,60),[90,100]频数分别为8,2.

(1)求样本容量和频率分布直方图中的的值;

(2)估计本次竞赛学生成绩的中位数;

(3)在选取的样本中,从竞赛成绩在分以上(含分)的学生中随机抽取名学生,求所抽取的名学生中至少有一人得分在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若对任意,都有,求实数的取值范围;

2)在第(1)问求出的实数的范围内,若存在一个与有关的负数,使得对任意恒成立,求的最小值及相应的.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是某电商2019121日至1216日的日销售量(单位:件)统计图,销量小于100称为该商品滞销,销量大于200称为该商品畅销,则下列关于该商品在这16天的销量的说法不正确的是( )

A.该商品出现过连续4天畅销

B.该商品畅销的频率为0.5

C.相邻两天该商品销量之差的最大值为195

D.该商品销量的平均数小于200

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十九大提出,坚决打赢脱贫攻坚战,某帮扶单位为帮助定点扶贫村真脱贫,坚持扶贫同扶智相结合,帮助贫困村种植蜜柚,并利用电商进行销售,为了更好地销售,现从该村的蜜柚树上随机摘下了100个蜜柚进行测重,其质量分别在 (单位:克)中,其频率分布直方图如图所示.

(1)按分层抽样的方法从质量落在 的蜜柚中抽取5个,再从这5个蜜柚中随机抽取2个,求这2个蜜柚质量均小于2000克的概率;

(2)以各组数据的中间数代表这组数据的平均水平,以频率代表概率,已知该贫困村的蜜柚树上大约还有5000个蜜柚等待出售,某电商提出两种收购方案:

A.所有蜜柚均以40元/千克收购;

B.低于2250克的蜜柚以60元/个收购,高于或等于2250克的以80元/个收购.

请你通过计算为该村选择收益最好的方案.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆

(1)求圆关于直线对称的圆的标准方程;

(2)过点的直线被圆截得的弦长为8,求直线的方程;

(3)当取何值时,直线与圆相交的弦长最短,并求出最短弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】连结圆周上九个不同点的36条弦要么染成红色,要么染成蓝色,我们称它们为红边蓝边”.假定由这九个点中每三个点为顶点的三角形中都含有红边”.证明:这九个点中存在四个点,两两连结的六条边都是红边.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然底数),.

(1)当时,对任意的,都有不等式,求实数的取值范围;

(2)若函数上的减函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的几何体,关于其结构特征,下列说法不正确的是

A. 该几何体是由两个同底的四棱锥组成的几何体

B. 该几何体有12条棱、6个顶点

C. 该几何体有8个面,并且各面均为三角形

D. 该几何体有9个面,其中一个面是四边形,其余均为三角形

查看答案和解析>>

同步练习册答案