精英家教网 > 高中数学 > 题目详情
已知抛物线C1:y2=2px(p>0)的焦点F以及椭圆C2
y2
a2
+
x2
b2
=1(a>b>0)的上、下焦点及左、右顶点均在圆O:x2+y2=1上.
(1)求抛物线C1和椭圆C2的标准方程;
(2)过点F的直线交抛物线C1于A,B两不同点,交y轴于点N,已知
NA
=λ1
AF
NB
=λ2
BF
,则λ12是否为定值?若是,求出其值;若不是,说明理由.
(1)由抛物线C1:y2=2px(p>0)的焦点F(
p
2
,0
)在圆O:x2+y2=1上得:
p2
4
=1

∴p=2,
∴抛物线C1:y2=4x(3分)
同理由椭圆C2
y2
a2
+
x2
b2
=1(a>b>0)的上、下焦点(0,c),(0,-c)
及左、右顶点(-b,0),(b,0)均在圆O:x2+y2=1上可解得:b=c=1,
a=
2

得椭圆C2:x2+
y2
2
=1
.(6分)
(2)λ12是定值,且定值为-1.
设直线AB的方程为y=k(x-1),A(x1,y1),B(x2,y2)则N(0,k).
联立方程组
y2=4x
y=k(x-1)
,消去y得:k2x2-(2k2+4)+k2=0,
∴△=16k2+16>0,且
x1+x2=
2k2+4
k2
x1x2=1
,(9分)
NA
=λ1
AF
NB
=λ2
BF
得:λ1(1-x1)=x1,λ2(1-x2)=x2
整理得:λ1=
x1
1-x1
,λ2=
x2
1-x2

λ12=
x1+x2-2x1x2
1-(x1+x2)+x1x2
=
2k2+4-2
k2
1-
2k2+4
k2
+1
=-1
(13分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知A(-3,0),B、C两点分别在y轴和x轴上运动,并且满足
AB
BQ
=0
BC
=
1
2
CQ

(1)求动点Q的轨迹方程;
(2)设过点A的直线与Q的轨迹交于E、F两点,A′(3,0),求直线A′E、A′F的斜率之和.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的中心在原点,一个焦点为F(0,
2
)
,且长轴长与短轴长的比为
2
:1

(1)求椭圆C的方程;
(2)若椭圆C上在第一象限内的一点P的横坐标为1,过点P作倾斜角互补的两条不同的直线PA,PB分别交椭圆C于另外两点A,B.求证:直线AB的斜率为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

一动圆过定点P(0,1),且与定直线l:y=-1相切.
(1)求动圆圆心C的轨迹方程;
(2)若(1)中的轨迹上两动点记为A(x1,y1),B(x2,y2),且x1x2=-16.
①求证:直线AB过一定点,并求该定点坐标;
②求|PA|+|PB|的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,N为圆C:(x+1)2+y2=16上的一动点,点D(1,0),点M是DN的中点,点P在线段CN上,且
MP
DN
=0

(Ⅰ)求动点P表示的曲线E的方程;
(Ⅱ)若曲线E与x轴的交点为A,B,当动点P与A,B不重合时,设直线PA与PB的斜率分别为k1,k2,证明:k1•k2为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,已知双曲线C1:2x2-y2=1.
(1)过C1的左顶点引C1的一条渐近线的平行线,求该直线与另一条渐近线及x轴围成的三角形的面积;
(2)设斜率为1的直线l交C1于P、Q两点,若l与圆x2+y2=1相切,求证:OP⊥OQ;
(3)设椭圆C2:4x2+y2=1,若M、N分别是C1、C2上的动点,且OM⊥ON,求证:O到直线MN的距离是定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知O为坐标原点,F为椭圆C:x2+
y2
2
=1
在y轴正半轴上的焦点,过F且斜率为-
2
的直线l与C交于A、B两点,点P满足
OA
+
OB
+
OP
=
0

(Ⅰ)证明:点P在C上;
(Ⅱ)设点P关于点O的对称点为Q,证明:A、P、B、Q四点在同一圆上.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

直线l过x轴上的点M,l交椭圆
x2
8
+
y2
4
=1
于A,B两点,O是坐标原点.
(1)若M的坐标为(2,0),当OA⊥OB时,求直线l的方程;
(2)若M的坐标为(1,0),设直线l的斜率为k(k≠0),是否存直线l,使得l垂直平分椭圆的一条弦?如果存在,求k的取值范围;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

将曲线C1:(x-4)2+y2=4所有点的横坐标不变,纵坐标变为原来的
1
2
得到曲线C2,将曲线C2向左(x轴负方向)平移4个单位,得到曲线C3
(Ⅰ)求曲线C3的方程;
(Ⅱ)垂直于x轴的直线l与曲线C3相交于C、D两点(C、D可以重合),已知A(-2,0),B(2,0),直线AC、BD相交于点P,求P点的轨迹方程.

查看答案和解析>>

同步练习册答案