精英家教网 > 高中数学 > 题目详情

(本题满分15分) 已知函数f(x)=(2-a)(x-1)-2lnx,,其中a∈R,

(1)求f(x)的单调区间;

(2)若函数f(x)在(0,)上无零点,求a的取值范围.

 

【答案】

(1)当a=2时,f(x)=-lnx,故函数f(x)递减区间为(0,);

当a2时,

若a>2,当x>0时,都有,所以函数f(x)递减区间为(0,);

若a<2,当x变化时,的变化情况如下表:

 x

0

+

f(x)

  

 

   极小值

     

故函数f(x)递减区间为:

故函数f(x)递增区间为:

(2)因为f(x)<0在区间上恒成立不可能,故要使函数f(x) 在区间上无零点,只要对任意的x,f(x)>0恒成立即可,

即对x,a>恒成立.

再令

故h(x)在上为减函数,于是h(x)>h,

从而,于是g(x)在上为增函数,

所以g(x)<,

故要使函数f(x)在上无零点,a的取值范围为:.

 

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源:2010-2011年江苏省如皋市五校高二下学期期中考试理科数学 题型:解答题

((本题满分15分)
某有奖销售将商品的售价提高120元后允许顾客有3次抽奖的机会,每次抽奖的方法是在已经设置并打开了程序的电脑上按“Enter”键,电脑将随机产生一个                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        1~6的整数数作为号码,若该号码是3的倍数则顾客获奖,每次中奖的奖金为100元,运用所学的知识说明这样的活动对商家是否有利。

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省招生适应性考试文科数学试卷(解析版) 题型:解答题

(本题满分15分)设函数

(Ⅰ)若函数上单调递增,在上单调递减,求实数的最大值;

(Ⅱ)若对任意的都成立,求实数的取值范围.

注:为自然对数的底数.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省温州市十校联合体高三上学期期初摸底文科数学 题型:解答题

(本题满分15分)已知直线与曲线相切

1)求b的值;

2)若方程上恰有两个不等的实数根,求

①m的取值范围;

②比较的大小

 

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省温州市十校联合体高三上学期期中考试文科数学 题型:解答题

(本题满分15分)已知抛物线),焦点为,直线交抛物线两点,是线段的中点,

  过轴的垂线交抛物线于点

  (1)若抛物线上有一点到焦点的距离为,求此时的值;

  (2)是否存在实数,使是以为直角顶点的直角三角形?若存在,求出的值;若不存在,说明理由。

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省六校高三第一次联考文科数学 题型:解答题

(本题满分15分)

已知函数

(1)求的单调区间;

(2)设,若上不单调且仅在处取得最大值,求的取值范围.

 

查看答案和解析>>

同步练习册答案