精英家教网 > 高中数学 > 题目详情
2.已知抛物线x2=3y上两点A,B的横坐标恰是方程x2+5x+1=0的两个实根,则直线AB的斜率=$-\frac{5}{3}$;直线AB的方程为5x+3y+1=0.

分析 分别设出A和B的坐标,代入抛物线解析式和方程中,分别消去平方项得到两等式,根据两等式的特点即可得到直线AB的方程.即可求出直线的斜率.

解答 解:设A(x1,y1),B(x2,y2),则
把A的坐标代入抛物线解析式和已知的方程得:x12=3y1①,x12+5x1+1=0②,
①-②整理得:5x1+3y1+1=0③;
同理把B的坐标代入抛物线解析式和已知的方程,化简可得:5x2+3y2+1=0④,
③④表示经过A和B的方程,
所以直线AB的方程是:5x+3y+1=0.
直线的斜率为:$-\frac{5}{3}$.
故答案为:$-\frac{5}{3}$;5x+3y+1=0.

点评 此题考查学生会求动点的轨迹方程,考查抛物线方程,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.如图,在四棱锥S-ABCD中,底面是边长为2的正方形,SA⊥底面ABCD,且SA=2,E为SC的中点,则直线BE与平面ABCD所成角的正弦值为$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.直线x+$\sqrt{3}$y-1=0的斜率为(  )
A.$\frac{\sqrt{3}}{3}$B.$\sqrt{3}$C.-$\frac{\sqrt{3}}{3}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设集合M={x|x∈Z且-10≤x≤-3},N={x|x∈Z且|x|≤5 },则M∪N中元素的个数为(  )
A.11B.10C.16D.15

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.执行如图的程序框图,如果输入的t=0.1,则输出的n=(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.某几何体的三视图如图所示,则这个几何体外接球的表面积为(  )
A.20πB.40πC.50πD.60π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.正三棱柱ABC-A1B1C1中,AB=2=AA1,则直线AC1与平面BCC1B1所成角的正弦值为$\frac{\sqrt{6}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在平面直角坐标系xOy中,已知∠α的顶点为原点O,其始边与x轴正方向重合,终边过两曲线y=$\sqrt{x+3}$和y=$\sqrt{1-x}$的交点,则cos2α+cot($\frac{3π}{2}$+α)=-$\frac{1}{3}$+$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设集合A,B分别是函数y=log3(9-x2)的定义域和值域,则A∩B=(  )
A.(-3,2)B.(-3,2]C.(0,2]D.(0,2)

查看答案和解析>>

同步练习册答案