精英家教网 > 高中数学 > 题目详情

【题目】【2017唐山三模已知函数 .

(1)讨论函数的单调性;

(2)若函数在区间有唯一零点,证明: .

【答案】(Ⅰ)见解析;(Ⅱ)见解析.

【解析】试题分析:(Ⅰ)求导得 ,三种情况讨论可得单调区间.

(Ⅱ)由(1)及可知:仅当极大值等于零,即

所以,且,消去,构造函数,证明单调且零点存在且唯一即可.

试题解析:(Ⅰ)

,即,则

时, 单调递增,

,即,则,仅当时,等号成立,

时, 单调递增.

,即,则有两个零点

时, 单调递增;

时, 单调递减;

时, 单调递增.

综上所述,

时, 上单调递增;

时, 上单调递增,

上单调递减.

(Ⅱ)由(1)及可知:仅当极大值等于零,即时,符合要求.

此时, 就是函数在区间的唯一零点.

所以,从而有

又因为,所以

,则

,则

再由(1)知: 单调递减,

又因为

所以,即

点晴:本题考查函数导数与单调性.确定零点的个数问题:可利用数形结合的办法判断交点个数,如果函数较为复杂,可结合导数知识确定极值点和单调区间从而确定其大致图象.方程的有解问题就是判断是否存在零点的问题,可参变分离,转化为求函数的值域问题处理. 恒成立问题以及可转化为恒成立问题的问题,往往可利用参变分离的方法,转化为求函数最值处理.也可构造新函数然后利用导数来求解.注意利用数形结合的数学思想方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】定义:对于函数f(x),若在定义域内存在实数x,满足f(﹣x)=﹣f(x),则称f(x)为“局部奇函数”.
(1)已知二次函数f(x)=ax2+2x﹣4a(a∈R),试判断f(x)是否为定义域R上的“局部奇函数”?若是,求出满足f(﹣x)=﹣f(x)的x的值;若不是,请说明理由;
(2)若f(x)=2x+m是定义在区间[﹣1,1]上的“局部奇函数”,求实数m的取值范围.
(3)若f(x)=4x﹣m2x+1+m2﹣3为定义域R上的“局部奇函数”,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)设等差数列{an}的前n项和为Sn,且S4=4S2,a2n=2an+1
(1) 求数列{an}的通项公式;
(2) 设数列{bn}的前n项和Tn,且Tn+ = λ(λ为常数),令cn=b2n,(n∈N).求数列{cn}的前n项和Rn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)= 是定义在区间(﹣1,1)上的奇函数,且f(2)=
(1)确定函数f(x)的解析式;
(2)用定义法证明f(x)在区间(﹣1,1)上是增函数;
(3)解不等式f(t﹣1)+f(t)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2 (a∈R),且f(1)>f(3),f(2)>f(3)(
A.若k=1,则|a﹣1|<|a﹣2|
B.若k=1,则|a﹣1|>|a﹣2|
C.若k=2,则|a﹣1|<|a﹣2|
D.若k=2,则|a﹣1|>|a﹣2|

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合A={x|ax2+bx+1=0}(a∈R,b∈R),集合B={﹣1,1}.
(1)若BA,求实数a的值;
(2)若A∩B≠,求a2﹣b2+2a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直角梯形中, , ,平面平面, 为等边三角形, 分别是的中点, .

(1)证明: ;

(2)证明: 平面;

(3),求几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数是奇函数,函数是偶函数,则

A. 函数是奇函数 B. 函数是奇函数

C. 函数是奇函数 D. 是奇函数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】集合I={1,2,3,4,5},集合A,B为集合I的两个非空子集,若集合A中元素的最大值小于集合B中元素的最小值,则满足条件的A,B的不同情形有( )种.
A.46
B.47
C.48
D.49

查看答案和解析>>

同步练习册答案