1£®ÒÑÖª$\overrightarrow{a}$=£¨x+1£¬y£©£¬$\overrightarrow{b}$=£¨x-1£¬y£©£¬ÆäÖÐx£¬y¡ÊR£¬ÇÒ|$\overrightarrow{a}$|+|$\overrightarrow{b}$|=4£¬¶¯µãP£¨x£¬y£©µÄ¹ì¼£ÎªL£®
£¨¢ñ£©Ç󶯵ãP£¨x£¬y£©µÄ¹ì¼£·½³Ì£»
£¨¢ò£©ÒÑÖªµãF1£¨-1£¬0£©£¬¹ýµãF2£¨1£¬0£©µÄÖ±ÏßlÓë¹ì¼£LÏཻÓÚA£¬BÁ½µã£¬ÎÊ¡÷ABF1µÄÄÚÇÐÔ²µÄÃæ»ýÊÇ·ñ´æÔÚ×î´óÖµ£¿Èô´æÔÚ£¬Çó³öÕâ¸ö×î´óÖµ¼°Ö±ÏßlµÄ·½³Ì£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨¢ñ£©Ö±½ÓÓÉÒÑÖª½áºÏ|$\overrightarrow{a}$|+|$\overrightarrow{b}$|=4£¬ÇóµÃ¶¯µãP£¨x£¬y£©µÄ¹ì¼£·½³Ì£»
£¨¢ò£©°Ñ¡÷ABF1µÄÄÚÇÐÔ²µÄÃæ»ý×î´óת»¯Îª¡÷ABF1µÄÃæ»ý×î´ó£¬Éè³öÖ±ÏßlµÄ·½³ÌΪx=my+1£¬ÁªÁ¢Ö±Ïß·½³ÌºÍÍÖÔ²·½³Ì£¬×ª»¯Îª¹ØÓÚyµÄÒ»Ôª¶þ´Î·½³Ì£¬Óɺ¯ÊýµÄµ¥µ÷ÐÔÇóµÃʹ¡÷ABF1µÄÃæ»ý×î´óµÄmÖµ£¬½øÒ»²½ÇóµÃÄÚÇÐÔ²Ãæ»ýµÄ×î´óÖµ£®

½â´ð ½â£º£¨¢ñ£©ÓÉ$\overrightarrow{a}$=£¨x+1£¬y£©£¬$\overrightarrow{b}$=£¨x-1£¬y£©£¬ÇÒ|$\overrightarrow{a}$|+|$\overrightarrow{b}$|=4£¬
µÃ£º$\sqrt{£¨x+1£©^{2}+{y}^{2}}+\sqrt{£¨x-1£©^{2}+{y}^{2}}=4$£®
ÕûÀíµÃ£º$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$£»
£¨¢ò£©Èô¡÷ABF1µÄÄÚÇÐÔ²µÄÃæ»ý×î´ó£¬¼´ÄÚÇÐÔ²µÄ°ë¾¶×î´ó£¬
¡ß¡÷ABF1µÄÖܳ¤ÎªÍÖÔ²$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$µÄ³¤Ö᳤µÄ2±¶Îª¶¨Öµ£¬
Ôò¡÷ABF1µÄÃæ»ý×î´ó£®
ÉèÖ±ÏßlµÄ·½³ÌΪx=ty+1£®
ÁªÁ¢$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\\{x=my+1}\end{array}\right.$£¬µÃ£º£¨3m2+4£©y2+6my-9=0£®
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
Ôò${y}_{1}+{y}_{2}=-\frac{6m}{3{m}^{2}+4}£¬{y}_{1}{y}_{2}=-\frac{9}{3{m}^{2}+4}$£®
¡à$|{y}_{1}-{y}_{2}|=\sqrt{£¨{y}_{1}+{y}_{2}£©^{2}-4{y}_{1}{y}_{2}}$=$\sqrt{£¨-\frac{6m}{3{m}^{2}+4}£©^{2}-4¡Á£¨-\frac{9}{3{m}^{2}+4}£©}$
=$\sqrt{\frac{36{m}^{2}+36£¨3{m}^{2}+4£©}{£¨3{m}^{2}+4£©^{2}}}$=$\sqrt{\frac{144£¨{m}^{2}+1£©}{[3£¨{m}^{2}+1£©+1]^{2}}}$=$\sqrt{\frac{144}{9£¨{m}^{2}+1£©+\frac{1}{{m}^{2}+1}+6}}$£®
µ±m2+1=1£¬¼´m=0ʱ£¬|y1-y2|max=3£®
´Ëʱ¡÷ABF1µÄÃæ»ý×î´ó£¬×î´óֵΪ$\frac{1}{2}¡Á2¡Á3=3$£®
Éè¡÷ABF1µÄÄÚÇÐÔ²µÄ°ë¾¶Îªr£¬Ôò$\frac{1}{2}¡Á4¡Á2r=3$£¬r=$\frac{3}{4}$£¬
ÄÚÇÐÔ²µÄÃæ»ýΪ$\frac{9}{16}¦Ð$£¬´ËʱֱÏßlµÄ·½³ÌΪx=1£®

µãÆÀ ±¾Ì⿼²éÓÉƽÃæÏòÁ¿ÇóÇúÏߵĹ켣·½³Ì£¬¿¼²éÁËÖ±ÏߺÍԲ׶ÇúÏßµÄλÖùØϵ£¬¿¼²é¼ÆËãÄÜÁ¦£¬ÊÇÖиߵµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÒÑÖªÇúÏßCµÄ·½³ÌΪx2+x+y-1=0£¬ÔòÏÂÁи÷µãÖÐÔÚÇúÏßCÉϵĵãÊÇ£¨¡¡¡¡£©
A£®£¨0£¬1£©B£®£¨-1£¬3£©C£®£¨1£¬1£©D£®£¨-1£¬1£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®Éè¦Á¡Ê£¨0£¬$\frac{¦Ð}{4}$£©£¬Èôtan£¨¦Á+$\frac{¦Ð}{4}$£©=2cos2¦Á£¬Ôò¦Á=arctan£¨2-$\sqrt{3}$£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®É躯Êý$f£¨{x\;£¬\;y}£©={£¨{\frac{2}{m}-\frac{m}{y}}£©^x}\;£¨{m£¾0\;£¬\;y£¾0}£©$£¬
£¨1£©¢Ùµ±m=2ʱ£¬Çóf£¨4£¬y£©µÄÕ¹¿ªÊ½ÖжþÏîʽϵÊý×î´óµÄÏ
¢ÚÈô$f£¨{6\;£¬\;y}£©={a_0}+\frac{a_1}{y}+¡­+\frac{a_6}{y^6}$£¬ÇÒa1=-12£¬Çó$\sum_{i=1}^6{a_i}$£»
£¨2£©ÀûÓöþÏîʽ¶¨ÀíÇó$\sum_{k=1}^n{{{£¨-1£©}^k}{k^2}C_n^k}$µÄÖµ£¨n¡Ý1£¬n¡ÊN*£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®Ò»×éÊý¾ÝµÄƽ¾ùÊýÊÇ2.8£¬·½²îÊÇ3.6£¬Èô½«Õâ×éÊý¾ÝÖеÄÿһ¸öÊý¾Ý¶¼³ËÒÔ2ºóÔÙ¼ÓÉÏ60£¬µÃµ½Ò»×éÐÂÊý¾Ý£¬ÔòËùµÃÐÂÊý¾ÝµÄƽ¾ùÊýºÍ·½²î·Ö±ðÊÇ£¨¡¡¡¡£©
A£®62.8£¬3.6B£®62.8£¬14.4C£®65.6£¬3.6D£®65.6£¬14.4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖªÅ×ÎïÏßy2=2px£¨p£¾0£©µÄ½¹ µãΪF£¬AÊÇÅ×ÎïÏßÉϺá×ø±êΪ4¡¢ÇÒλÓÚxÖáÉÏ·½µÄµã£¬Aµ½Å×ÎïÏß×¼ÏߵľàÀëµÈÓÚ5£®¹ýA×÷AB´¹Ö±ÓÚyÖᣬ´¹×ãΪB£¬OBµÄÖеãΪM£®
£¨1£©ÇóÅ×ÎïÏß·½³Ì£®
£¨2£©ÒÔMΪԲÐÄ£¬MBΪ°ë¾¶×÷Ô²M£¬µ±K£¨m£¬0£©ÊÇxÖáÉÏÒ»¶¯µãʱ£¬ÌÖÂÛÖ±ÏßAKÓëÔ²MµÄλÖùØϵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÒÑÖªº¯Êýf£¨x£©=$\sqrt{3}$sin¦Øx£¨¦Ø£¾0£©µÄ²¿·ÖͼÏóÈçͼËùʾ£¬A£¬B·Ö±ðÊÇÕⲿ·ÖͼÏóÉϵÄ×î¸ßµã¡¢×îµÍµã£¬OΪ×ø±êÔ­µã£¬Èô$\overrightarrow{OA}$•$\overrightarrow{OB}$=0£¬Ôòº¯Êýf£¨x+1£©ÊÇ£¨¡¡¡¡£©
A£®ÖÜÆÚΪ4µÄÆ溯ÊýB£®ÖÜÆÚΪ4µÄżº¯Êý
C£®ÖÜÆÚΪ2¦ÐµÄÆ溯ÊýD£®ÖÜÆÚΪ2¦ÐµÄżº¯Êý

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®ÈôÖ±ÏßlµÄ·½ÏòÏòÁ¿ÓëƽÃæ¦ÁµÄ·¨ÏòÁ¿µÄ¼Ð½ÇµÈÓÚ150¡ã£¬ÔòÖ±ÏßlÓëƽÃæ¦ÁËù³ÉµÄ½ÇµÈÓÚ60¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®´æÔÚʵÊýa£¬Ê¹µÃ¶Ôº¯Êýy=g£¨x£©¶¨ÒåÓòÄÚµÄÈÎÒâx£¬¶¼ÓÐa£¼g£¨x£©³ÉÁ¢£¬Ôò³ÆaΪg£¨x£©µÄϽ磬ÈôaΪËùÓÐϽçÖÐ×î´óµÄÊý£¬Ôò³ÆaΪº¯Êýg£¨x£©µÄÏÂÈ·½ç£®ÒÑÖªx£¬y£¬z¡ÊR+ÇÒÒÔx£¬y£¬zΪ±ß³¤¿ÉÒÔ¹¹³ÉÈý½ÇÐΣ¬Ôòf£¨x£¬y£¬z£©=$\frac{xy+yz+zx}{{{{£¨{x+y+z}£©}^2}}}$µÄÏÂÈ·½çΪ£¨¡¡¡¡£©
A£®$\frac{1}{6}$B£®$\frac{1}{4}$C£®$\frac{1}{3}$D£®$\frac{1}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸