精英家教网 > 高中数学 > 题目详情

【题目】 “一带一路”是“丝绸之路经济带”和“21世纪海上丝绸之路”的简称某市为了了解人们对“一带一路”的认知程度,对不同年龄和不同职业的人举办了一次“一带一路”知识竞赛,满分100分(90分及以上为认知程度高),现从参赛者中抽取了人,按年龄分成5组(第一组:,第二组,第三组:,第四组:,第五组:),得到如图所示的频率分布直方图,已知第一组有6人

(1)求

(2)求抽取的人的年龄的中位数(结果保留整数);

(3)从该市大学生、军人、医务人员、工人、个体户五种人中用分层抽样的方法依次抽取6人,42人,36人,24人,12人,分别记为1-5组,从这5个按年龄分的组合5个按职业分的组中每组各选派1人参加知识竞赛代表相应组的成绩,年龄组中1-5组的成绩分别为93,96,97,94,90,职业组中1-5组的成绩分别为93,98,94,95,90

i)分别求5个年龄组和5个职业组成绩的平均数和方差;

ii)以上述数据为依据,评价5个年龄组和5个职业组对“一带一路”的认知程度,并谈谈你的感想

【答案】(1)(2)(3)(i)(ii)从平均数来看两组的认知程度相同,从方差来看年龄组的认知程度更好.

【解析】

试题分析:(1)因为第一组有人,且频率为,所以(2)中位数平分整个面积,因为第一二个矩形的面积和为,所以中位数在第三个矩形的上,设中位数为,,解得(3)(i)因为,代入数据计算即可(ii)平均数反映平均水平,方差反映波动情况.

试题解析:解:(1)根据频率分布直方图得第一组频率为

2)设中位数为,则

中位数为32

3)(i)5个年龄组的平均数为

方差为

5个职业组的平均数为

方差为

(ii)评价:从平均数来看两组的认知程度相同,从方差来看年龄组的认知程度更好

感想:结合本题和实际,符合社会主义核心价值观即可

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中,点分别在棱上(均异于端点),且.

(1)求证:平面平面

(2)求证: 平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆的离心率,过点的直线与原点的距离为是椭圆上任一点,从原点向圆作两条切线,分别交椭圆于点.

(Ⅰ)求椭圆的方程;

(Ⅱ)若记直线的斜率分别为,试求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,我海监船在岛海域例行维权巡航,某时刻航行至处,此时测得其东北方向与它相距32海里的处有一外国船只,且岛位于海监船正东海里处.

1)求此时该外国船只与岛的距离;

2)观测中发现,此外国船只正以每小时8海里的速度沿正南方向航行,为了将该船拦截在离24海里处,不让其进入24海里内的海域,试确定海监船的航向,并求其速度的最小值.(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某车间为了制作某个零件,需从一块扇形的钢板余料(如图1)中按照图2的方式裁剪一块矩形钢板,其中顶点在半径上,顶点在半径上,顶点上, .设,矩形的面积为.

(1)用含的式子表示 的长;

(2)试将表示为的函数;

(3)求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下茎叶图记录了甲,乙两组各四名同学的植树棵数.乙组记录中有一个数据模糊,无法确认,在图中以表示.

1)如果,求乙组同学植树棵数的平均数和方差;

2)如果,分别从甲,乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.(注:方差,其中……的平均数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)求函数的单调递增区间;

(Ⅱ)用反证法证明:在上,不存在不同的两点,使得的图象在这两点处的切线相互平行.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数,若在定义域内存在实数,满足,则称为“局部奇函数”.

为定义在上的“局部奇函数”;

曲线轴交于不同的两点;

为假命题, 为真命题,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若 都是从0,1,2,3,4五个数中任取的一个数,求上述函数有零点的概率;

(2)若 都是从区间上任取的一个数,求成立的概率.

查看答案和解析>>

同步练习册答案