精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的两个焦点为,离心率.

(1)求椭圆的方程;

(2)设直线与椭圆交于两点,线段的垂直平分线交轴于点,当变化时,求面积的最大值.

【答案】(1);(2)

【解析】试题分析:(1)根据椭圆几何条件得,再由离心率解得,即得,(2)由直线与椭圆有两个交点得判别式大于零,解得m取值范围,再根据点斜式写出线段的垂直平分线方程,解得点坐标,根据点到直线距离公式得高,根据弦长公式得底边边长,根据三角形面积公式得面积函数关系式,最后根据二次函数性质求最大值.

试题解析:(1)由离心率,半焦距,解得.

所以,所以椭圆的方程是.

(2)解:设

∵直线与椭圆有两个不同的交点,

,又,所以.

由根与系数的关系得

设线段中点为,点横坐标,∴

∴线段垂直平分线方程为,∴点坐标为

到直线的距离

所以

,所以当时,三角形面积最大,且.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某产品按行业生产标准分成8个等级,等级系数X依次为1,2,…8,其中为标准,为标准. 已知甲厂执行标准生产该产品,产品的零售价为6元/件; 乙厂执行标准生产该产品,产品的零售价为元/件,假定甲, 乙两厂的产品都符合相应的执行标准.

(Ⅰ)已知甲厂产品的等级系数的概率分布列如下所示:

5

6

7

8

0.4

b

0.1

的数学期望, 求a,b的值;

(Ⅱ)为分析乙厂产品的等级系数,从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下:

用这个样本的频率分布估计总体分布,将频率视为概率,求等级系数的数学期望;

(Ⅲ)在(Ⅰ),(Ⅱ)的条件下,若以“性价比”为判断标准,则哪个工厂的产品更具可购买性?说明理由.

注: ①产品的“性价比”=;②“性价比”大的产品更具可购买性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在点处的切线是.

(1)求函数的极值;

(2)当恒成立时,求实数的取值范围(为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.(为自然对数的底数)

(1)设

①若函数处的切线过点,求的值;

②当时,若函数上没有零点,求的取值范围.

(2)设函数,且,求证:当时,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,平面平面,四边形和四边形都是正方形,且边长为的中点.

(1)求证:直线平面

(2)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系中,已知椭圆)的左焦点为,离心率为,过点且垂直于长轴的弦长为

(1)求椭圆的标准方程;

(2)设点分别是椭圆的左、右顶点,若过点的直线与椭圆相交于不同两点

①求证:

②求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,原点为,椭圆的动弦过焦点且不垂直于坐标轴,弦的中点为,过且垂直于线段的直线交直线于点

(1)证明:三点共线;

(2)求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面平面,点在棱上,且.

(Ⅰ)求证:

(Ⅱ)是否存在实数,使得二面角的余弦值为?若存在,求出实数的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为(其中为参数),曲线,以坐标原点为极点,以轴正半轴为极轴建立极坐标系.

(1)求曲线的普通方程和曲线的极坐标方程;

(2)若射线与曲线分别交于两点,求.

查看答案和解析>>

同步练习册答案