精英家教网 > 高中数学 > 题目详情
(本小题11分)如图,三棱锥C—ABD,CB = CD,AB = AD,∠BAD = 90°。E、F分别是BC、AC的中点。

(1)求证:AC⊥BD;
(2)若CA = CB,求证:平面BCD⊥平面ABD
(3)在上找一点M,在AD上找点N,使平面MED//平面BFN,说明理由;并求出的值
(1)见解析;(2)见解析;(3)2.

试题分析:(1)取中点,连接 
中CB = CD,的中点,所以
同理中,,所以平面,所以………3分
(2)当CA = CB时,中,的中点,所以
,所以,所以,…………5分
,又,所以平面
平面BCD,
所以,平面BCD⊥平面ABD………………………………7分
(3)取CF中点M,连接MD,ED,在AD上取点N,使得 ……………9分
因为M是CF中点,E是BC中点,所以ME//BF,又
所以MD/NF,所以平面MED//平面BFN   …………………11分
点评:本题主要考查了“线与平面垂直”与“线与线垂直”的相互转化,线与平面的平行的判定及“线线平行”与“线面平行’的转化,考查了空间想象能力、推理论证的能力及对定理的熟练掌握。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分) 如图,在四棱锥中,底面是正方形,侧棱⊥底面的中点,作于点
(1) 证明//平面
(2) 证明⊥平面
(3) 求二面角的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)如图,在四面体中,,的中点.

(1)求证:平面
(2)设的重心,是线段上一点,且.求证:平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设m、n是两条不同的直线,、β是两个不同的平面,则下列命题中正确的是
A.若m∥n,m∥,则n∥
B.若⊥β,m∥,则m⊥β
C.若⊥β,m⊥β,则m∥
D.若m⊥n,m⊥,n⊥β,则⊥β

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图长方体中,AB=AD=2,CC1=,则二面角C1—BD—C
的大小为(   )
A.300B.450C.600D.900

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线与平面,给出下列三个命题:
①若      ②若
③若     ④ 
其中真命题的是(   )
A.②③B.②③④C.②③④D.①④

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线a、b、c及平面α、β,下列命题正确的是(   )
A.若aα,bα,c⊥a, c⊥b 则c⊥αB.若bα, a//b则 a//α
C.若a//α,α∩β=b则a//bD.若a⊥α, b⊥α 则a//b

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

P正三角形ABC所在平面外一点,PA=PB=PC=,且PA,PB,PC两两垂直,则P到面ABC的距离为(  )
A.B.C.1D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知直线和平面,且,则的位置关系是             

查看答案和解析>>

同步练习册答案