精英家教网 > 高中数学 > 题目详情

【题目】从某居民区随机抽取10个家庭,获得第i个家庭的月收入xi(单位:千元)与月储蓄yi(单位:千元)的数据资料,算得 =80, =20, iyi=184, =720.(b=
(1)求家庭的月储蓄y对月收入x的线性回归方程;
(2)判断变量x与y之间是正相关还是负相关;
(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.

【答案】
(1)解:由题意知,n=10, =8, =2,

∴b= =0.3,a=2﹣0.3×8=﹣0.4,

∴y=0.3x﹣0.4.


(2)解:由于b=0.3>0,

∴y与x之间是正相关.


(3)解:x=7时,y=0.3×7﹣0.4=1.7(千元)
【解析】(1)由题意可知n, ,进而代入可得b、a值,可得方程;(2)由回归方程x的系数b的正负可判断;(3)把x=7代入回归方程求其函数值即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆C经过点,且圆心在直线上,又直线与圆C交于P,Q两点.

1)求圆C的方程;

2)若,求实数的值;

(3)过点作直线,且交圆CM,N两点,求四边形的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为抛物线的焦点,过的直线交于两点, 中点,点轴的距离为 .

(1)求的值;

(2)过分别作的两条切线 .请选择轴中的一条,比较到该轴的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位附近只有甲、乙两个临时停车场,它们各有个车位,为了方便市民停车,某互联网停车公司对这两个停车场,在某些固定时刻的剩余停车位进行记录,如下表:

时间

停车场

甲停车场

乙停车场

如果表中某一时刻剩余停车位数低于该停车场总车位数的,那么当车主驱车抵达单位附近时,该公司将会向车主发出停车场饱和警报.

(1)假设某车主在以上六个时刻抵达单位附近的可能性相同,求他收到甲停车场饱和警报的概率;

(2)从这六个时刻中任选一个时刻,求甲停车场比乙停车场剩余车位数少的概率;

(3)当乙停车场发出饱和警报时,求甲停车场也发出饱和警报的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从高一年级学生中随机抽取40名中学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段: ,…, ,得到如图所示的频率分布直方图.

(1)求图中实数的值;

(2)若该校高一年级共有640人,试估计该校高一年级期中考试数学成绩不低于60分的人数;

(3)若从数学成绩在两个分数段内的学生中随机选取2名学生,求这2名学生的数学成绩之差的绝对值不大于10的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}中,a1=2,an+1﹣an﹣2n﹣2=0(n∈N*).
(1)求数列{an}的通项公式;
(2)设 ,若对任意的正整数n,当m∈[﹣1,1]时,不等式 恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示, 矩形所在的平面, 分别是的中点.

(1)求证: 平面

(2)求证: .

(3)当满足什么条件时,能使平面成立?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|a﹣1<x<2a+1},B={x|0<x<1}
(1)若a= , 求A∩B.
(2)若A∩B=,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知x∈R,符号[x]表示不超过x的最大整数,若函数f(x)=(x>0),则给出以下四个结论:
①函数f(x)的值域为[0,1];
②函数f(x)的图象是一条曲线;
③函数f(x)是(0,+∞)上的减函数;
④函数g(x)=f(x)﹣a有且仅有3个零点时
其中正确的序号为

查看答案和解析>>

同步练习册答案