精英家教网 > 高中数学 > 题目详情

在一次购物抽奖活动中,假设某10张奖券中有一等奖卷1张,可获价值50元的奖品;有二等奖卷3张,每张可获价值10元的奖品;其余6张没有奖。某顾客从这10张中任抽2张,求:(1)该顾客中奖的概率;(2)该顾客获得的奖品总价值X(元)的分布列和数学期望。

 

【答案】

(1)

(2)

0

10

20

50

60

该顾客获得的奖品总价值X(元)的数学期望为16。

【解析】

试题分析:解:(1)记顾客中奖为事件A.,即该顾客中奖的概率为

(2)X所有可能的取值为(单位:元):0,10,20,50,60.且,

,,,

.故X的分布列为

0

10

20

50

60

该顾客获得的奖品总价值X(元)的数学期望为16。

考点:分布列和数学期望

点评:主要是考查了古典概型的概率公式的运用,以及离散型随机变量的分布列的求解,属于中档题。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖,某顾客从此10张券中任抽2张,求:
(Ⅰ)该顾客中奖的概率;
(Ⅱ)该顾客获得的奖品总价值ξ(元)的概率分布列和期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从此10张券中任抽2张,求:
(1)该顾客中奖的概率;
(2)求该顾客获得的奖品总价值不少于50元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从此10张券中任抽2张,求:
(1)该顾客中奖的概率
(2)该顾客获得的奖品总价值ξ(元)的概率分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

在一次购物抽奖活动中,假设某6张券中有一等奖券1张,可获价值50元的奖品;有二等奖券1张,每张可获价值20元的奖品;其余4张没有奖.某顾客从此6张中任抽1张,求:
(1)该顾客中奖的概率;
(2)该顾客参加此活动可能获得的奖品价值的期望值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年龙岩一中冲刺文)(12分)

在一次购物抽奖活动中,假设10张奖券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,可获价值10元的奖品;其余6张没有奖. 某顾客从此10张奖券中任抽2张,求:

(1)该顾客中奖的概率;

(2)该顾客获得的奖品总价值不低于20元的概率.

查看答案和解析>>

同步练习册答案