精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1)若,证明:当时,

(2)若只有一个零点,求

【答案】(1)见解析(2)

【解析】分析:(1)先构造函数,再求导函数,根据导函数不大于零得函数单调递减,最后根据单调性证得不等式,(2)研究零点,等价研究的零点,先求导数:,这里产生两个讨论点,一个是a与零,一个是x与2,当时,没有零点;当时,先减后增,从而确定只有一个零点的必要条件,再利用零点存在定理确定条件的充分性,即得a的值.

详解:(1)当时,等价于

设函数,则

时,,所以单调递减

,故当时,,即

(2)设函数

只有一个零点当且仅当只有一个零点

(i)当时,没有零点;

(ii)当时,

时,;当时,

所以单调递减,在单调递增

的最小值

①若,即没有零点;

②若,即只有一个零点;

③若,即,由于,所以有一个零点,

由(1)知,当时,,所以

有一个零点,因此有两个零点

综上,只有一个零点时,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2019年是中华人民共和国成立70周年,某校党支部举办了一场“我和我的祖国”知识竞赛,满分100分,回收40份答卷,成绩均落在区间内,将成绩绘制成如下的频率分布直方图.

1)估计知识竞赛成绩的中位数和平均数;

2)从分数段中,按分层抽样随机抽取5份答卷,再从对应的党员中选出3位党员参加县级交流会,求选出的3位党员中有2位成绩来自于分数段的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在梯形中, ,四边形为矩形,平面平面 .

(Ⅰ)求证: 平面

(Ⅱ)点在线段上运动,设平面与平面所成锐二面角为,试求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若,证明:当时,

(2)若只有一个零点,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是等差数列,满足,数列满足,且是等比数列.

1)求数列的通项公式;

2)求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·湖南)某工作的三视图如图3所示,现将该工作通过切削,加工成一个体积尽可能大的正方体新工件,并使新工件的一个面落在原工作的一个面内,则原工件材料的利用率为(材料利用率=新工件的体积/原工件的体积)

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列五个命题:

①函数fx=2a2x-1-1的图象过定点(-1);

②已知函数fx)是定义在R上的奇函数,当x≥0时,fx=xx+1),若fa=-2则实数a=-12

③若loga1,则a的取值范围是(1);

④若对于任意xRfx=f4-x)成立,则fx)图象关于直线x=2对称;

⑤对于函数fx=lnx,其定义域内任意x1x2都满足f

其中所有正确命题的序号是______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数=[]

若曲线y= fx在点(1,处的切线与轴平行a

x=2处取得极小值a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形中,,将沿折起,使平面平面.

(1)证明:平面

(2)求三棱锥的高.

查看答案和解析>>

同步练习册答案