精英家教网 > 高中数学 > 题目详情
.为双曲线上的一点,为一个焦点,以为直径的圆与圆的位置关系是
内切      内切或外切       .外切       .相离或相交
B
本题考查曲线位置关系判定。若F左焦点,P点在左支曲线上,两圆外切,若F左焦点,P点在右支曲线上,两圆内切。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
在平面直角坐标系中,N为圆C:上的一动点,点D(1,0),点M是DN的中点,点P在线段CN上,且.
(Ⅰ)求动点P表示的曲线E的方程;
(Ⅱ)若曲线E与x轴的交点为,当动点P与A,B不重合时,设直线的斜率分别为,证明:为定值;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线与圆相切,过的一个焦点且斜率为的直线也与圆相切.
(Ⅰ)求双曲线的方程;      
(Ⅱ)是圆上在第一象限的点,过且与圆相切的直线的右支交于两点,的面积为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

点M到(3,0)的距离比它到直线ⅹ+4=0的距离小1,则点M的轨迹方程为(   )
A.y²=12ⅹB.y²=12ⅹ(ⅹ?0)
C.y²=6ⅹD.y²=6ⅹ(ⅹ?0)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

给出下列三个命题
①若,则
②若正整数m和n满足,则
③设为圆上任一点,圆O2为圆心且半径为1.当时,圆O1与圆O2相切
其中假命题的个数为    (   )
A.0 B.1 C.2D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

 已知抛物线的准线为,焦点为,圆的圆心在轴的正半轴上,且与轴相切,过原点作倾斜角为的直线,交于点,交圆于另一点,且
(1)求圆和抛物线C的方程;
(2)若为抛物线C上的动点,求的最小值;
(3)过上的动点Q向圆作切线,切点为S,T,
求证:直线ST恒过一个定点,并求该定点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆,则当在此椭圆上存在不同两点关于直线对称时的取值范围为(    )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分13分)已知圆C: 
(1)若平面上有两点A(1 , 0),B(-1 , 0),点P是圆C上的动点,求使 取得最小值时点P的坐标.   
(2) 若轴上的动点,分别切圆两点
①若,求直线的方程;
②求证:直线恒过一定点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,过抛物线焦点的直线依次交抛物线与圆于点A、B、C、D,则的值是_____

查看答案和解析>>

同步练习册答案