【题目】已知函数f(x)=|x﹣a|+|x+a|.
(Ⅰ)当a=2时,解不等式f(x)>6;
(Ⅱ)若关于x的不等式f(x)<a2﹣1有解,求实数a的取值范围.
【答案】解:(Ⅰ)当a=2时, . 当x>2时,可得2x>6,解得x>3.
当﹣2≤x≤2时,因为4>6不成立,故此时无解;
当x<﹣2时,由﹣2x>6得,x<﹣3,故此时x<﹣3.
综上所述,不等式f(x)>6的解集为(﹣∞,﹣3)∪(3,+∞).
(Ⅱ)∵f(x)=|x﹣a|+|x+a|≥|x﹣a﹣x﹣a|=|2a|,
要使关于x的不等式f(x)<a2﹣1有解,只需|2a|<a2﹣1即可.
当a≥0时,2a<a2﹣1,解得 ,或 (舍去);
当a<0时,﹣2a<a2﹣1,解得 (舍去),或 ;
所以,a的取值范围为
【解析】(I)讨论x的范围,去绝对值符号解出;(II)利用绝对值不等式的性质求出fmin(x),令fmin(x)<a2﹣1解出.
【考点精析】关于本题考查的绝对值不等式的解法,需要了解含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号才能得出正确答案.
科目:高中数学 来源: 题型:
【题目】设定义在(0,+∞)上的函数 f(x),对于任意正实数 a、b,都有 f(ab)=f(a)+f(b)﹣1,f(2)=0,且当 x>1 时,f(x)<1.
(1)求 f(1)及的值;
(2)求证:f(x)在(0,+∞)上是减函数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正实数a,b,c,函数f(x)=|x+a||x+b|. (Ⅰ)若a=1,b=3,解关于x的不等式f(x)+x+1<0;
(Ⅱ)求证:f(1)f(c)≥16abc.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥A﹣BCD中,平面ABD⊥平面BCD,AB=AD,∠CBD=60°,BD=2BC=4,点E在CD上,DE=2EC.
(Ⅰ)求证:AC⊥BE;
(Ⅱ)若二面角E﹣BA﹣D的余弦值为 ,求三棱锥A﹣BCD的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线x2=2py和 ﹣y2=1的公切线PQ(P是PQ与抛物线的切点,未必是PQ与双曲线的切点)与抛物线的准线交于Q,F(0, ),若 |PQ|= |PF|,则抛物线的方程是( )
A.x2=4y
B.x2=2 y
C.x2=6y
D.x2=2 y
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下面几种推理过程是演绎推理的是 ( )
A. 某校高三(1)班有55人,2班有54人,3班有52人,由此得高三所有班人数超过50人
B. 两条直线平行,同旁内角互补,如果∠A与∠B是两条平行直线的同旁内角,则∠A+∠B=180°
C. 由平面三角形的性质,推测空间四边形的性质
D. 在数列{an}中,a1=1,an= (an-1+)(n≥2),由此归纳出{an}的通项公
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线C1的参数方程为 (t为参数),以原点O为极点,以x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为 . (I)求曲线C2的直角坐标系方程;
(II)设M1是曲线C1上的点,M2是曲线C2上的点,求|M1M2|的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com