精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=|x﹣a|+|x+a|.
(Ⅰ)当a=2时,解不等式f(x)>6;
(Ⅱ)若关于x的不等式f(x)<a2﹣1有解,求实数a的取值范围.

【答案】解:(Ⅰ)当a=2时, . 当x>2时,可得2x>6,解得x>3.
当﹣2≤x≤2时,因为4>6不成立,故此时无解;
当x<﹣2时,由﹣2x>6得,x<﹣3,故此时x<﹣3.
综上所述,不等式f(x)>6的解集为(﹣∞,﹣3)∪(3,+∞).
(Ⅱ)∵f(x)=|x﹣a|+|x+a|≥|x﹣a﹣x﹣a|=|2a|,
要使关于x的不等式f(x)<a2﹣1有解,只需|2a|<a2﹣1即可.
当a≥0时,2a<a2﹣1,解得 ,或 (舍去);
当a<0时,﹣2a<a2﹣1,解得 (舍去),或
所以,a的取值范围为
【解析】(I)讨论x的范围,去绝对值符号解出;(II)利用绝对值不等式的性质求出fmin(x),令fmin(x)<a2﹣1解出.
【考点精析】关于本题考查的绝对值不等式的解法,需要了解含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设定义在(0+∞)上的函数 fx),对于任意正实数 ab,都有 fab)=fa+fb)﹣1f2)=0,且当 x1 时,fx)<1

1)求 f1)及的值;

2)求证:fx)在(0+∞)上是减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正实数a,b,c,函数f(x)=|x+a||x+b|. (Ⅰ)若a=1,b=3,解关于x的不等式f(x)+x+1<0;
(Ⅱ)求证:f(1)f(c)≥16abc.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥A﹣BCD中,平面ABD⊥平面BCD,AB=AD,∠CBD=60°,BD=2BC=4,点E在CD上,DE=2EC.
(Ⅰ)求证:AC⊥BE;
(Ⅱ)若二面角E﹣BA﹣D的余弦值为 ,求三棱锥A﹣BCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线经过点,且斜率为

(I)求直线的方程;

)若直线平行,且点P到直线的距离为3,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线x2=2py和 ﹣y2=1的公切线PQ(P是PQ与抛物线的切点,未必是PQ与双曲线的切点)与抛物线的准线交于Q,F(0, ),若 |PQ|= |PF|,则抛物线的方程是(
A.x2=4y
B.x2=2 y
C.x2=6y
D.x2=2 y

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面几种推理过程是演绎推理的是 (  )

A. 某校高三(1)班有55人,2班有54人,3班有52人,由此得高三所有班人数超过50

B. 两条直线平行,同旁内角互补,如果∠A与∠B是两条平行直线的同旁内角,则∠AB180°

C. 由平面三角形的性质,推测空间四边形的性质

D. 在数列{an}中,a11an (an1)(n≥2),由此归纳出{an}的通项公

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C1的参数方程为 (t为参数),以原点O为极点,以x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为 . (I)求曲线C2的直角坐标系方程;
(II)设M1是曲线C1上的点,M2是曲线C2上的点,求|M1M2|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,的中点.

求证:平面.

查看答案和解析>>

同步练习册答案