精英家教网 > 高中数学 > 题目详情
9.如图,在五面体ABCDEF中,四边形ABCD为菱形,且∠BAD=$\frac{π}{3}$,对角线AC与BD相交于O,OF⊥平面ABCD,BC=CE=DE=2EF=2.
(Ⅰ) 求证:EF∥BC;
(Ⅱ)求面AOF与平面BCEF所成锐二面角的正弦值.

分析 (Ⅰ)由AD∥BC,得BC∥面ADEF,由此能证明EF∥BC.
(Ⅱ)以O为坐标原点,OA,OB,OF分别为x轴,y轴,z轴,建立空间直角坐标系,由此能求出面AOF与面BCEF所成的锐二面角的正弦值.

解答 (本小题满分12分)
证明:(Ⅰ)∵四边形ABCD为菱形
∴AD∥BC,且BC?面ADEF,AD?面ADEF,
∴BC∥面ADEF,且面ADEF∩面BCEF=EF,
∴EF∥BC.    …(6分)
解:(Ⅱ)∵FO⊥面ABCD,∴FO⊥AO,FO⊥OB
又∵OB⊥AO,以O为坐标原点,OA,OB,OF分别为x轴,
y轴,z轴,建立空间直角坐标系,
取CD的中点M,连OM,EM.易证EM⊥平面ABCD.
又∵BC=CE=DE=2EF=2,得出以下各点坐标:
B(0,1,0),C(-$\sqrt{3}$,0,0),D(0,-1,0),
F(0,0,$\sqrt{3}$),E(-$\frac{\sqrt{3}}{2}$,-$\frac{1}{2}$,$\sqrt{3}$),
向量$\overrightarrow{DE}$=(-$\frac{\sqrt{3}}{2}$,$\frac{1}{2}$,$\sqrt{3}$),向量$\overrightarrow{BC}$=(-$\sqrt{3}$,-1,0),向量$\overrightarrow{BF}=(0,-1,\sqrt{3})$,
设面BCFE的法向量为:$\overrightarrow{n_0}=({x_0},{y_0},{z_0})$,
$\left\{\begin{array}{l}{\overrightarrow{{n}_{0}}•\overrightarrow{BC}=0}\\{\overrightarrow{{n}_{0}}•\overrightarrow{BF}=0}\end{array}\right.$,得到$\left\{\begin{array}{l}-\sqrt{3}{x_0}-{y_0}=0\\-{y_0}+\sqrt{3}{z_0}=0\end{array}\right.$,
令${y}_{0}=\sqrt{3}$时,$\overrightarrow{{n}_{0}}$=(-1,$\sqrt{3}$,1),
面AOF的一个法向量$\overrightarrow n=(0,1,0)$,
设面AOF与面BCEF所成的锐二面角为θ,
则cosθ=$\frac{|\overrightarrow{n}•\overrightarrow{{n}_{0}}|}{|\overrightarrow{n}|•|\overrightarrow{{n}_{0}}|}$=$\frac{\sqrt{3}}{\sqrt{5}}$=$\frac{\sqrt{15}}{5}$,∴sinθ=$\frac{\sqrt{10}}{5}$.
故面AOF与面BCEF所成的锐二面角的正弦值为$\frac{\sqrt{10}}{5}$.…(12分)

点评 本题考查线线平行的证明,考查二面角的正弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.在某公司中秋联欢晚会上设计了一个抽奖游戏,在一个口袋中装有5个红球和10个白球,这些球除颜色外完全相同,一次从中抽出3个球,至少抽到2个红球就中奖,则中奖的概率为(  )
A.$\frac{20}{91}$B.$\frac{22}{91}$C.$\frac{24}{91}$D.$\frac{26}{91}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数y=log2tan($\frac{π}{4}$-x)的定义域是(-$\frac{π}{4}$+kπ,$\frac{π}{4}$+kπ),k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知抛物线y=x2-7上存在关于直线x+y=0对称的相异两点A、B,则|AB|等于(  )
A.5B.$5\sqrt{2}$C.6D.$6\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知一个几何体可切割成一个多面体及一个旋转体的一部分,其三视图如图所示,则该几何体的体积是(  )
A.$\frac{3}{2}$πB.π+1C.π+$\frac{1}{6}$D.π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某几何体的三视图如图所示,且该几何体的体积为$\frac{2\sqrt{3}}{3}$,则正视图中x的值为(  )
A.$\sqrt{3}$B.2$\sqrt{3}$C.$\frac{\sqrt{3}}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=|x2-1|-ax-1(a∈R)
(1)若关于x的方程f(x)+x2+1=0在区间(0,2]上有两个不同的解x1,x2
①求a的取值范围;
②若x1<x2,求$\frac{1}{{x}_{1}}$+$\frac{1}{{x}_{2}}$的取值范围;
(2)设函数f(x)在区间[0,2]上的最大值和最小值分别为M(a),m(a),求g(a)=M(a)-m(a)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=x-1-alnx(其中a为参数).
(1)求函数f(x)的单调区间;
(2)若对任意x∈(0,+∞),都有f(x)≥0成立,求实数a的取值集合;
(3)证明:(1+$\frac{1}{n}$)n<e<(1+$\frac{1}{n}$)n+1(其中n∈N*,e为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数$\overrightarrow a$=(2sinx,cosx+sinx),$\overrightarrow b$=(cosx,cosx-sinx),f(x)=$\overrightarrow a$•$\overrightarrow b$.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若关于x的方程f(x)-m=0(m∈R)在区间(0,$\frac{π}{2}$)内有两个不相等的实数根x1,x2,记t=mcos(x1+x2),求实数t的取值范围.

查看答案和解析>>

同步练习册答案