精英家教网 > 高中数学 > 题目详情

【题目】如图,在多面体中,四边形为矩形,均为等边三角形,

(1)过作截面与线段交于点,使得平面,试确定点的位置,并予以证明;

(2)在(1)的条件下,求直线与平面所成角的正弦值.

【答案】(1)当为线段的中点时,使得平面.(2)

【解析】

试题分析:(1)为线段的中点时,平面连结AC交BD于M,连结MN.利用中位线定理即可证明 ,于是平面

(2)通过线面关系证得 .分别以的方向为轴的正方向,建立空间直角坐标系,用向量法求解即可.

试题解析:(1)当为线段的中点时,使得平面

证法如下:

连接,设

∵四边形为矩形,

的中点,

又∵的中点,

的中位线,

平面平面

平面,故的中点时,使得平面

(2)过分别与交于

因为的中点,所以分别为的中点,

均为等边三角形,且

,连接,则得

∴四边形为等腰梯形.

的中点,连接,则

又∵

平面

点作,则

分别以的方向为轴的正方向,建立空间直角坐标系,不妨设,则由条件可得:

是平面的法向量,

所以可取

,可得

∴直线与平面所成角的正弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数fx=Asin(ωx+)(A0,ω>0||)的部分图象如图所示.

(Ⅰ)求fx)的解析式;

(Ⅱ)若对于任意的x[0m]fx)≥1恒成立,求m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱柱中,底面是正三角形,侧棱底面.D,E分别是边BC,AC的中点,线段交于点G,且

(1)求证:∥平面

(2)求证:⊥平面

(3)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于集合,.集合中的元素个数记为.规定:若集合满足,则称集合具有性质

(I)已知集合,写出的值;

(II)已知集合为等比数列,,且公比为,证明:具有性质

(III)已知均有性质,且,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下四个命题:①设,则的充要条件;②已知命题满足“”真,“”也真,则“”假;③若,则使得恒成立的的取值范围为{};④将边长为的正方形沿对角线折起,使得,则三棱锥的体积为.其中真命题的序号为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列说法:

①方程表示一个圆;

②若,则方程表示焦点在轴上的椭圆;

③已知点,若,则动点的轨迹是双曲线的右支;

④以过抛物线焦点的弦为直径的圆与该抛物线的准线相切,

其中正确说法的个数是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:(xa2+y224a0)及直线lxy+30.当直线l被圆C截得的弦长为时,求

(Ⅰ)a的值;

(Ⅱ)求过点(35)并与圆C相切的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】每年六、七月份,我国长江中下游地区进入持续25天左右的梅雨季节,如图是江南某地区10年间梅雨季节的降雨量单位:的频率分布直方图,试用样本频率估计总体概率,解答下列问题:

假设每年的梅雨季节天气相互独立,求该地区未来三年里至少有两年梅雨季节的降雨量超过350mm的概率.

老李在该地区承包了20亩土地种植杨梅,他过去种植的甲品种杨梅,平均每年的总利润为28万元而乙品种杨梅的亩产量与降雨量之间的关系如下面统计表所示,又知乙品种杨梅的单位利润为,请你帮助老李分析,他来年应该种植哪个品种的杨梅可以使总利润万元的期望更大?并说明理由.

降雨量

亩产量

500

700

600

400

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正三棱柱的所有棱长都相等,中点,则二面角的正切值为_______

查看答案和解析>>

同步练习册答案