精英家教网 > 高中数学 > 题目详情
4.四棱锥S-ABCD中,底面边长为2,侧棱长为3,E是侧棱SC的中点,建立如图所示的空间直角坐标系,试求点A、C、E的坐标.

分析 根据如图所示的空间坐标系,即可求出点A、C、E的坐标.

解答 解:四棱锥S-ABCD中,
∴四边形ABCD为正方形,S0⊥平面ABCD,
∴SO⊥AC,
∵AB=2,
∴AO=0C=$\sqrt{2}$,
∵SC=3,
∴SO=$\sqrt{S{C}^{2}-O{C}^{2}}$=$\sqrt{{3}^{2}-2}$=$\sqrt{7}$,
∴点A($\sqrt{2}$,0,0),C(-$\sqrt{2}$,0,0),S(0,0,$\sqrt{7}$),
∴E(-$\frac{\sqrt{2}}{2}$,0,$\frac{\sqrt{7}}{2}$).

点评 本题考查了空间坐标系的问题,以及中点坐标公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=x2定义域是[a,2],值域是[0,4],则实数a的取值范围为-2≤a≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图所求,已知四边形ABCD、EADM和MDCF都是边长为a的正方形,点P、Q分别是ED和AC的中点.
求:
(1)$\overrightarrow{PM}$与$\overrightarrow{FQ}$所成的角;
(2)P点到平面EFB的距离;
(3)异面直线PM与FQ的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,AA1和BB1是成60°角的两条异面直线,AB⊥A1A,AB⊥BB1,若A1B1⊥BB1,且BB1=2,则线段AA1的长为(  )
A.1B.2C.$\frac{\sqrt{3}}{2}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率$\frac{\sqrt{6}}{2}$.
(1)求双曲线C的渐近线方程;
(2)若它的一个顶点到较近焦点的距离为$\sqrt{3}$-$\sqrt{2}$,求双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知$\overrightarrow{a}$=(3,4),$\overrightarrow{b}$=(-6,-8),求cos<$\overrightarrow{a}$•$\overrightarrow{b}$>.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知抛物线y2=16x上有一点P,到准线的距离为20,求:
(1)点P到焦点的距离;
(2)点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.A,B,C,D,E五个人排成一行照相.
(1)A在B的左侧且相邻,有多少种排法?
(2)A和B相邻,有多少种排法?
(3)A和B不相邻,有多少种排法?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=ln(sinx+$\sqrt{si{n}^{2}x+α}$),-$\frac{π}{2}$≤x≤$\frac{π}{2}$,a为实常数,且f(x)为奇函数.
(1)求a的值;试说明函数f(x)的单调性,并求f(x)的值域;
(2)设g(x)为f(arcsinx)的反函数,并指出g(x)的定义域与值域.

查看答案和解析>>

同步练习册答案