精英家教网 > 高中数学 > 题目详情
(2013•许昌三模)已知函数,f(x)=
x
3x+1
,数列{an}满足a1=1,an+1=f(an)(n∈N*
(I)求证数列{
1
an
}是等差数列,并求数列{an}的通项公式;
(II)记Sn=a1a2+a2a3+..anan+1,求Sn
分析:(I)直接利用an+1=f(an)得到an+1=
an
3an+1
.再对其取倒数整理即可证数列{
1
an
}是等差数列;进而求出数列{an}的通项公式;
(II)利用(I)的结论以及所问问题的形式,直接利用裂项相消求和法即可求Sn
解答:解:(I)由条件得,an+1=
an
3an+1

1
an+1
=
1
an
+3
1
an+1
-
1
an
=3.
∴数列{
1
an
}是首项为
1
a1
=1,公差d=3的等差数列.
1
an
=1+(n-1)×3=3n-2.
故an=
1
3n-2

(II)∵anan+1=
1
(3n-2)(3n+1)
=
1
3
1
3n-2
-
1
3n+1
).
∴Sn═a1a2+a2a3+..anan+1
=
1
3
[(1-
1
4
)+(
1
4
-
1
7
)+…+(
1
3n-2
-
1
3n+1
)]
=
1
3
(1-
1
3n+1
)=
n
3n+1
点评:本题第二问主要考查了数列求和的裂项相消法.裂项相消法一般适用于一数列的通项是一分式形式且分子为常数,而分母是某一等差数列相邻两项的乘积组成.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•许昌三模)已知f(x)=x3+ax2-a2x+2.
(Ⅰ)若a=1,求曲线y=f(x)在点(1,f(1)处的切线方程;
(Ⅱ)若a≠0 求函数f(x)的单调区间;
(Ⅲ)若不等式2xlnx≤f′(x)+a2+1恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•许昌三模)已知圆C的方程为x2+y2=4,过点M(2,4)作圆C的两条切线,切点分别为A,B,直线AB恰好经过椭圆T:
x2
a2
+
y2
b2
=1(a>b>0)
的右顶点和上顶点.
(1)求椭圆T的方程;
(2)已知直线l与椭圆T相交于P,Q两不同点,直线l方程为y=kx+
3
(k>0)
,O为坐标原点,求△OPQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•许昌三模)如图,多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AB=CD=1,AC=
3
,AD=DE=2
,G为AD的中点.
(1)求证;AC⊥CE;
(2)在线段CE上找一点F,使得BF∥平面ACD,并给予证明;
(3)求三棱锥VG-BCE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•许昌三模)己知集合M={(x,y)|x2+2y2=3},N={(x,y)|y=mx+b}.若对所有m∈R,均有M∩N≠∅,则b的取值范同是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•许昌三模)设向量
a
=(
3
sinθ+cosθ+1,1),
b
=(1,1),θ∈[
π
3
3
],m是向量
a
 在向量
b
向上的投影,则m的最大值是(  )

查看答案和解析>>

同步练习册答案